TOWNSHIP OF UNION PUBLIC SCHOOLS

Grade 7 Accelerated Mathematics
Adopted June 20, 2017
Updated December 18, 2018

$\underline{\text { Mission Statement }}$

The mission of the Township of Union Public Schools is to build on the foundations of honesty, excellence, integrity, strong family, and community partnerships. We promote a supportive learning environment where every student is challenged, inspired, empowered, and respected as diverse learners. Through cultivation of students' intellectual curiosity, skills and knowledge, our students can achieve academically and socially, and contribute as responsible and productive citizens of our global community.

Philosophy Statement

The Township of Union Public School District, as a societal agency, reflects democratic ideals and concepts through its educational practices. It is the belief of the Board of Education that a primary function of the Township of Union Public School System is to formulate a learning climate conducive to the needs of all students in general, providing therein for individual differences. The school operates as a partner with the home and community.

Course Description

This course is designed to cover all 7th grade New Jersey Student Learning Standards as well as introduce key 8th grade skill sets needed to be successful in an advanced 8th grade class. The seventh grade math curriculum is currently aligned with the NJSLS. All lessons are created to address differentiated learning styles to ensure each lesson's objective is obtained by each student. The seventh grade accelerated curriculum focuses on six critical areas: (1) Analyze proportional relationships and use them to solve real-world and mathematical problems (2) completing understanding of operations of decimals and fractions and extending the notion of number to the system of rational numbers, which includes negative numbers and rules of exponents; (3) writing, interpreting, and using expressions and equations; (4) develop an understanding of statistical thinking along with understanding of theoretical and experimental probability; (5) Solve real-life and mathematical problems involving angle measure, area, surface area, and volume and; (6) solving, analyze, and creating linear equations on a graph, define, evaluate, and compare functions.

Recommended Textbooks:

Eureka Math - Engage NY Grade 7 Mathematics

 Eureka Math - Engage NY Grade 8 Mathematics

 Eureka Math - Engage NY Grade 8 Mathematics}

Curriculum Units

Unit 1: Operations with Rational Numbers, Expressions \& Expressions, Geometry

Unit 2: Percent, Ratios, and Proportional Relationships

Unit 3: Drawing Inferences about Population \& Probability Models

Unit 4: Factors and Exponents

Unit 5: Functions, Equations and Solutions

I. Unit Standards Overview

Overview	Standards for Mathematical Content	Unit Focus	Standards for Mathematical Practice
Unit 1 Operations with Rational Numbers. Expressions and Equations. Geometry		- Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers - Use properties of operations to generate equivalent expressions - Solve real-life and mathematical problems using numerical and algebraic expressions and equations - Solve real-life and mathematical problems involving angle measure, area, surface area, and volume including cylinders, cones, and spheres	MP. 1 Make sense of problems and persevere in solving them. MP. 2 Reason abstractly and quantitatively.
Unit 1: Suggested Educational Resources	7.NS.A. 1 Comparing Freezing Points 7.NS.A.1b-c Differences of Integers 7.NS.A. 2 Why is a Negative Times a Negative Always Positive 7.NS.A.2d Equivalent fractions approach to non-repeating decimals 7.NS.A.2d Repeating decimal as approximation 7.EE.A. 1 Writing Expressions 7.EE.A. 2 Ticket to Ride 7.EE.B. 3 Discounted Books 7.EE.B. 3 Shrinking 7.EE.B. 4 Fishing Adventures 2 7.NS.A. 1 Bookstore Account 7.EE.B.4b Sports Equipment Set 7.G.B. 4 Wedges of a Circle 7.G.B. 4 Eight Circles 7.G.B.6, Sand under the Swing Set 7.G.A. 2 A task related to 7.G.A. 2 7.G.A. 3 Cube Ninjas! 8.G.C. 9 A Canister of Tennis Balls		MP. 3 Construct viable arguments \& critique the reasoning of others. MP. 4 Model with mathematics. MP. 5 Use appropriate tools strategically. MP. 6 Attend to precision. MP. 7 Look for and make use of structure. MP. 8 Look for and express regularity in repeated reasoning.

Overview	Standards for Mathematical Content	Unit Focus	Standards for Mathematical Practice
Unit 2 Percent, Ratios, and Proportional Relationships	\square 7.RP.A. 1 \square 7.RP.A. 2 \square 7.RP.A. 3 \square 7.G.A. 1	- Analyze proportional relationships and use them to solve realworld and mathematical problems - Draw, construct, and describe geometrical figures and describe the relationships between them - Solve multi-step ratio and percent problems using proportional relationships	
Unit 2: Suggested Educational Resources	7.RP.A. 1 Cooking with the Whole Cup 7.RP.A. 2 Sore Throats, Variation 1 7.RP.A. 2 Buying Coffee 7.RP.A.2c Gym Membership Plans 7.G.A. 1 Floor Plan 7.G.A. 1 Map distance		
Unit 3 Drawing Inferences about Populations \& Probability Models	\square 7.SP.A. 1 \square 7.SP.A. 2 \bigcirc 7.SP.B. 3 \bigcirc 7.SP.B. 4 \square 7.SP.C. 5 \square 7.SP.C. 6 \square 7.SP.C. 7 \square 7.SP.C. 8	- Use random sampling to draw inferences about a population - Draw informal comparative inferences about two populations - Investigate chance processes and develop, use, and evaluate probability models	MP. 1 Make sense of problems and persevere in solving them. MP. 2 Reason abstractly and quantitatively.
Unit 3: Suggested Educational Resources	7.SP.A. 1 Mr. Briggs Class Li 7.SP.A. 2 Valentine Marbles 7.SP.B.3,4 College Athletes 7.SP.B.3,4 Offensive Lineme 7.SP.C. 6 Heads or Tails 7.SP.C.7, 6 Rolling Dice 7.SP.C.7a How Many Button 7.SP.C. 8 Tetrahedral Dice 7.SP.C. 8 Waiting Times		MP. 3 Construct viable arguments \& critique the reasoning of others. MP. 4 Model with mathematics. MP. 5 Use appropriate tools strategically.
Unit 4 Factors and Exponents	8.EE.A. 1 \square 8.EE.A. 3 8.EE.A. 4 7.EE.A. 1	- Rules of exponents including negative integers - GCF and LCM of a monomial - Very large and very small quantities can be approximated with numbers expressed in the form of a single digit times an integer power of 10 .	MP. 6 Attend to precision. MP. 7 Look for and make use of structure.

Overview	Standards for Mathematical Content	Unit Focus	Standards for Mathematical Practice
Unit 4: Suggested Educational Resources	8.EE.A.1 Extending the Definitions of Exponents		
8.EE.A.3 Ant and Elephant	MP.8 Look for and express regularity in		
repeated reasoning.			

Overview	Standards for Mathematical Content	Unit Focus	Standards for Mathematical Practice
Unit 5 Functions, Equations, and Solutions	8.F.A. 1 8.F.A. 2 8.F.A. 3 8.F.B. 4 8.F.B. 5 8.EE.C. 7 8.EE.C. 8	- Define, evaluate, and compare functions - Use functions to model relationships between quantities - Analyze and solve linear equations and simultaneous linear equations	MP. 1 Make sense of problems and persevere in solving them. MP. 2 Reason abstractly and quantitatively.
Unit 5: Suggested Educational Resources	8.F.A. 1 Function Rules 8.F.A. 2 Battery Charging 8.F.A. 3 Introduction to Linear Functions 8.F.B. 4 Chicken and Steak, Variation 1 8.F.B. 4 Baseball Cards 8.EE.C. 7 The Sign of Solutions 8.EE.C. 7 Coupon versus discount 8.EE.C.8a Intersection of Two Lines 8.EE.C. 8 How Many Solutions		MP. 3 Construct viable arguments \& critique the reasoning of others. MP. 4 Model with mathematics. MP. 5 Use appropriate tools strategically.
			MP. 6 Attend to precision. MP. 7 Look for and make use of structure. MP. 8 Look for and express regularity in repeated reasoning.

II. Units

Unit 1

Unit 1 Operations with Rational Numbers, Expressions \& Expressions, Geometry			
Content \& Practice Standards	SMP	Critical Knowledge \& Skills	Standard Mastery Examples Can be used on formative, summative, benchmark, and alternative assessments.
Topic A 7.NS.A.1. Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line. 7.NS.A.1a. Describe situations in which opposite quantities combine to make 0 . For example, In the first round of a game, Maria scored 20 points. In the second round of the same game, she lost 20 points. What is her score at the end of the second round? 7.NS.A.1b. Understand $p+q$ as the number located a distance $\|q\|$ from p, in	MP. 2 MP. 3 MP. 5 MP. 7	Concept(s): - Opposite quantities combine to make 0 (additive inverses). - $\quad p+q$ is the number located a distance $\|q\|$ from p, in the positive or negative direction depending on whether q is positive or negative. - Subtraction of rational numbers as adding the additive inverse, $p-q$ $=p+(-q)$ - The product of two whole numbers is the total number of objects in a number of equal groups. Students are able to: - Represent addition and subtraction on a horizontal number line. - Represent addition and subtraction on a vertical number line. - Interpret sums of	- Solving what absolute value will give you an answer of 6? SELECT ALL THAT APPLY! A. $\|-6\|$ B. $\|6\|$ C. $\|9\|+\|-6\|$ D. $\|-6\|+\|13\|$ E. $\|-2\|+\|4\|$ Two numbers, n and p are plotted on the number line shown. The numbers $n-p, n+p$, and $p-n$ will be plotted on the number line. Select an expression from each drop-down menu to make this statement true. The number with the least value is \square Choose... . and the number with the greatest value is \square Choose..

the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing real-world contexts.

7.NS.A.1c.

Understand
subtraction of rational numbers as adding the additive inverse, $p-q$ $=p+(-q)$. Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts.
7.NS.A.1d. Apply properties of operations as strategies to add and subtract rational numbers.

Topic B
7.NS.A.2. Apply and
rational numbers in real-world situations.

- Show that the distance between two rational numbers on the number line is the absolute value of their difference.

Learning Goal 1: Describe real-world situations in which (positive and negative) rational numbers are combined, emphasizing rational numbers that combine to make 0 . Represent sums of rational numbers $(p+q)$ on horizontal and vertical number lines, showing that the distance along the number line is $|q|$ and including situations in which q is negative and positive,

Learning Goal 2: Add and subtract (positive and negative) rational numbers, showing that the distance between two points on a number line is the absolute value of their difference and representing subtraction using an additive inverse.

Concept(s):

- Integers can be divided, provided that the divisor is not zero.
- If p and q are integers, then $-(p / q)=(-p) / q=$ $p /(-q)$.

A ship lowered a device into the ocean to test for the amount of salt in the water. Each time the captain pressed a button, the device was lowered 10 feet. If the button was pressed six times, which integer represents the location of the device under the water?
and divide rational numbers.

7.NS.A.2a.

Understand that
multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as $(-1)(-1)=1$ and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts.

7.NS.A.2b.

Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with nonzero divisor) is a rational number. If p and q are integers, then $-(p / q)=(-p) / q=$ $p /(-q)$. 2c. Interpret quotients of rational numbers by describing real world contexts.

Students are able to:

- Multiply and divide signed numbers.

Learning Goal 3: Multiply and divide signed numbers, including rational numbers, and interpret the products and quotients using realworld contexts.

rational number to a decimal using long division; know that the decimal form of a rational number terminates in 0 s or eventually repeats.			
Topic C 7.NS.A.3. Solve real- world and mathematical problems involving the four operations with rational numbers. 7.NS.A.2. Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers. 7.NS.A.2c. Apply properties of operations as strategies to multiply and divide rational numbers.	$\begin{gathered} \text { MP. } 1 \\ \text { MP. } 2 \\ \text { MP. } 4 \\ \text { MP. } 5 \\ \text { MP. } 6 \end{gathered}$	Concept(s): - The process for multiplying and dividing fractions extends to multiplying and dividing rational numbers. Students are able to: - Add and subtract rational numbers. - Multiply and divide rational numbers using the properties of operations. - Apply the convention of order of operations to add, subtract, multiply and divide rational numbers. - Solve real world problems involving the four operations with rational numbers. Learning Goal 4: Apply properties of operations as strategies to add, subtract, multiply, and divide rational numbers.	The following is an example of the properties and how they are used in this lesson. $\begin{aligned} & -13 \frac{5}{7}+6-\frac{2}{7} \\ & =-13 \frac{5}{7}+6+\left(-\frac{2}{7}\right) \\ & =-13+\left(-\frac{5}{7}\right)+6+\left(-\frac{2}{7}\right) \\ & =-13+\left(-\frac{5}{7}\right)+\left(-\frac{2}{7}\right)+6 \\ & =-13+(-1)+6 \\ & =-14+6 \\ & =-8 \end{aligned}$ Subtracting a number is the same as adding its inverse. The opposite of a sum is the sum of its opposite. Commutative property of addition Associative property of addition

problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies.	MP. 3 MP. 4 MP. 5 MP. 6	Students are able to: - Solve multi-step reallife problems using rational numbers in any form. - Solve multi-step mathematical problems using rational numbers in any form. Learning Goal 8: Solve multi-step real life and mathematical problems with rational numbers in any form (fractions, decimals) by applying properties of operations and converting rational numbers between forms as needed. Assess the reasonableness of answers using mental computation and estimation strategies.	$4.5 x+3.25=10.5$
Topic G 7.G.B.4: Know the formulas for the area and circumference of a circle and use them to solve problems; give an informal derivation of the relationship between the circumference and area of a circle.	$\begin{aligned} & \text { MP. } 1 \\ & \text { MP. } 2 \\ & \text { MP. } 3 \\ & \text { MP. } 4 \\ & \text { MP. } 5 \\ & \text { MP. } 6 \\ & \text { MP. } 7 \\ & \text { MP. } 8 \end{aligned}$	Concept(s): - Circumference Students are able to: - Solve problems by finding the area and circumference of circles. - Show that the area of a circle can be derived from the circumference.	Martin and Muriel finished a project for class showing one way to see why the area of a circle is given by $A=\pi r^{2}$, if r is the radius of the circle. Muriel is not in class today and Martin is trying to understand the following page of pictures from their project. Help Martin by writing up an explanation of how these pictures could be used to derive the formula for the area of a circle.

		Learning Goal 9: Know the formulas for the area and circumference of a circle and use them to solve problems. Give an informal derivation of the relationship between the circumference and area of a circle.	
Topic H 7.G.B.5. Use facts about supplementary, complementary, vertical, and adjacent angles in a multi-step problem to write and solve simple equations for an unknown angle in a figure.	MP. 3 MP. 4 MP. 5 MP. 6 MP. 7	Concept(s): No new concept(s) introduced Students are able to: - Use facts about supplementary, complementary, vertical, and adjacent angles in a multi-step problem to write and solve simple equations. - Solve mathematical problems by writing and solving simple algebraic equations based on the relationships between and properties of angles (supplementary, complementary, vertical, and adjacent. Learning Goal 10: Write	

		and solve simple multi-step algebraic equations involving supplementary, complementary, vertical, and adjacent angles.	
Topic I 7.G.B.6. Solve realworld and mathematical problems involving area, volume and surface area of twoand three-dimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms.	$\begin{aligned} & \hline \text { MP. } 1 \\ & \text { MP. } 2 \\ & \text { MP. } 3 \\ & \text { MP. } 4 . \\ & \text { MP. } 5 \\ & \text { MP. } 6 \\ & \text { MP. } 7 \end{aligned}$	Concept(s): No new concept(s) introduced Students are able to: - Solve real-world and mathematical problems involving area of two dimensional objects composed of triangles, quadrilaterals, and polygons. - Solve real-world and mathematical problems involving volume of three dimensional objects composed of cubes and right prisms. - Solve real-world and mathematical problems involving surface area of threedimensional objects composed of cubes and right prisms. Learning Goal 11: Solve real-world and	- The 7th graders at Sunview Middle School were helping to renovate a playground for the kindergartners at a nearby elementary school. City regulations require that the sand underneath the swings be at least 15 inches deep. The sand under both swing sets was only 12 inches deep when they started. - The rectangular area under the small swing set measures 9 feet by 12 feet and required 40 bags of sand to increase the depth by 3 inches. How many bags of sand will the students need to cover the rectangular area under the large swing set if it is 1.5 times as long and 1.5 times as wide as the area under the small swing set?

		mathematical problems involving area, volume and surface area of two- and three-dimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms.	
Topic J 7.G.A.2. Draw (with technology, with ruler and protractor as well as freehand) geometric shapes with given conditions. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle	MP. 3 MP. 5 MP. 6 MP. 7	Concept(s): - Conditions for unique triangles, more than one triangle, and no triangle. Students are able to: - Draw geometric shapes with given conditions, including constructing triangles from three measures of angles or sides. - Recognize conditions determining a unique triangle, more than one triangle, or no triangle. Learning Goal 12: Use freehand, mechanical (i.e. ruler, protractor) and technological tools to draw geometric shapes with given conditions (e.g. scale factor), focusing on constructing triangles.	Starting at the origin, a ladybug walked 4 units east. Then she walked a distance of 3 units in an unknown direction. At that time she was 30 degrees to the north of her original walking direction. The diagram shows one possibility for the ladybug's final location. Find a different final location that is also consistent with the given information, and draw the ladybug there.
Topic K 7.G.A.3. Describe the two-dimensional	$\begin{aligned} & \text { MP. } 5 \\ & \text { MP. } 6 \end{aligned}$	Concept(s): - Cross-sections of three-dimensional objects	Imagine you are a ninja that can slice solid objects straight through. You have a solid cube in front of you. You are curious about what 2-dimensional shapes are formed when you slice the cube. For example, if you make a slice through the center of the cube that is parallel to one of the faces, the

figures that result from slicing threedimensional figures, as in plane sections of right rectangular prisms and right rectangular pyramids.	MP.7.	Students are able to: - Analyze three dimensional shapes (right rectangular pyramids and prisms) by examining and describing all of the 2 dimensional figures that result from slicing it at various angles. Learning Goal 13: Describe all of the 2dimensional figures that result when 3-dimemsional figures are sliced from multiple angles.	cross section is a square: For each of the following slices, (i) describe using precise mathematical language the shape of the cross section. (ii) draw a diagram showing the cross section of the cube. a. A slice containing edge AC and edge EG b. A slice containing the vertices C, B, and G . C. A slice containing the vertex A , the midpoint of edge EG, and the midpoint of edge FG.

Topic L 8.G.C.9. Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems	$\begin{aligned} & \text { MP. } 1 \\ & \text { MP. } 2 \\ & \text { MP. } 3 \\ & \text { MP. } 4 \\ & \text { MP. } 5 \\ & \text { MP. } 6 \\ & \text { MP. } 7 \end{aligned}$	Students are able to: - Find volume of cones, cylinders and spheres using to solve real world problems. Learning Goal 14: Apply the formula for the volume of a cone, a cylinder, or a sphere to find a single unknown dimension when solving real-world and mathematical problems.	The figure shows a right-circular cylinder and a right-circular cone. The cylinder and the cone have the same base and the same height. Part A What is the volume, in cubic feet, of the cone? A. 12π B. 16π C. 36π D. 48π Part B What is the ratio of the cone's volume to the cylinder's volume? Enter your answer in the box. Enter only your fraction.
Topic M 7.EE.B.4. Use variables to represent quantities in a realworld or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities. 7.EE.B.4a. Solve word problems leading to equations of the form $p x+q=r$ and $p(x+q)=r$, where p, q, and r are specific rational numbers. Solve equations of these	MP. 1 MP. 2 MP. 3 MP. 4 MP. 5 MP. 6 MP. 7	Concept(s): No new concept(s) introduced Students are able to: - Compare an arithmetic solution to a word problem to the algebraic solution of the word problem, identifying the sequence of operations in each solution. - Write an equation of the form $\mathrm{px}+\mathrm{q}$ $=r$ or $p(x+q)=r$ in order to solve a word problem.	- Fishing Adventures rents small fishing boats to tourists for day-long fishing trips. Each boat can only carry 1200 pounds of people and gear for safety reasons. Assume the average weight of a person is 150 pounds. Each group will require 200 lbs . of gear for the boat plus 10 lbs . of gear for each person. - Create an inequality describing the restrictions on the number of people possible in a rented boat. Graph the solution set. - Several groups of people wish to rent a boat. Group 1 has 4 people. Group 2 has 5 people. Group 3 has 8 people. Which of the groups, if any, can safely rent a boat? What is the maximum number of people that may rent a boat? - At the beginning of the month, Evan had $\$ 24$ in his account at the school bookstore. Use a variable to represent the unknown quantity in each transaction below and write an equation to represent it. Then represent each transaction on a number line. What is the unknown quantity in each case? i. First he bought some notebooks and pens that cost $\$ 16$. ii. Then he deposited some more money and his account balance was $\$ 28$. iii. Then he bought a book for English class that cost $\$ 34$. iv. Then he deposited exactly enough money so that he paid off his debt to the bookstore.

forms fluently.
Compare an algebraic
solution to an
arithmetic solution,
identifying the sequence of the operations used in each approach.

7.EE.B.4b. Solve

word problems leading to inequalities of the form $p x+q>r$ or $p x+q<r$, where p, q, and r are specific rational numbers.
Graph the solution set of the inequality and interpret it in the context of the problem.

- Fluently solve equations of the form $p x+q=r$ and $p(x+q)=r$.
- Write an inequality of the form $p x+q$
$>r, p x+q<r, p x$
$+q \geq r$ or $p x+q \leq$
r to solve a word problem.
- Graph the solution set of the inequality.
- Interpret the solution to an inequality in the context of the problem.

Learning Goal 15: Use

variables to represent quantities in a real-world or mathematical problem by constructing simple equations and inequalities to represent problems.

Learning Goal 16:

Fluently solve equations; solve inequalities, graph the solution set of the inequality and interpret the solutions in the context of the problem (Equations of the form $\mathrm{px}+\mathrm{q}=\mathrm{r}$ and $\mathrm{p}(\mathrm{x}$ $+q)=r$ and inequalities of the form $\mathrm{px}+\mathrm{q}>\mathrm{r}, \mathrm{px}+\mathrm{q}$ $\geq \mathrm{r}, \mathrm{px}+\mathrm{q} \leq \mathrm{r}$, or $\mathrm{px}+\mathrm{q}<\mathrm{r}$, where p, q, and r are specific rational numbers).

- Explain why it makes sense to use a negative number to represent Evan's account balance when he owes money.

Unit 1 Vocabulary

Additive Inverse; Break-Even Point (The break-even point is the point at which there is neither a profit nor loss.); Distance; Loss; Profit; Terminating Decimal; Repeating Decimal (The decimal form of a rational number, for example, $3=0.3$.); Absolute Value; Associative Property (of Multiplication and Addition); Commutative Property(of Multiplication and Addition); Credit; Debit; Deposit; Distributive Property(of Multiplication Over Addition); Expression; Equation; Integer; Inverse; Multiplicative Inverse; Opposites; Overdraft; Positives; Negatives; Like Terms; Terms; Equation; Expression; Inequality; Inverse operations; Algebraic inequality; Algebraic expression; Compound inequality; Inequality; Solution set; Rational number; Inverse; Reciprocal; Mixed number; Improper fraction; Decimal; Circumference; Area; Circle; Cross section; Three dimensional; Supplementary angles; Complementary angles; Vertical angles; Adjacent angles; Triangle; Polygon; Quadrilateral; Composite Shape; Cube; Right Prism; Volume; Surface Area; Rectangular Pyramid

Suggested Activities/Modifications

Below is a list of suggested activities, modifications, accommodations, and enrichment opportunities. This includes, but is not limited to,:

1. Activities
a. Review Game
b. Desmos Project
c. One quiz/one test
2. English Language Learners.
a. Read written instructions.
b. Students may be provided with note organizers / study guides to reinforce key topics.
c. Model and provide examples
d. Extended time on assessments when needed.
e. Establish a non-verbal cue to redirect student when not on task.
f. Students may use a bilingual dictionary.
g. Pair Visual Prompts with Verbal Presentations
h. Highlight Key Words \& Formulas
3. Special Education/504 Students.
a. Students may be provided with note organizers / study guides to reinforce key topics.
b. Extended time on assessments when needed.
c. Preferred seating to be determined by student and teacher.
d. Provide modified assessments when necessary.
e. Student may complete assessments in alternate setting when requested.
f. Establish a non-verbal cue to redirect student when not on task.
g. Maintain strong teacher / parent communication.
h. Repetition and practice
i. Pair Visual Prompts with Verbal Presentations
j. Provide Formulas

k. Check Use of Agenda

4. Gifted and Talented Students.
a. Use of Higher Level Questioning Techniques
b. Extension/Challenge Questions
c. Provide Assessments at a Higher Level of Thinking
d. Exploration Problems/Proofs

New Jersey Student Learning Standards - Technology

- 8.1.8.A. 5 Select and use appropriate tools and digital resources to accomplish a variety of tasks and to solve problems.

Career Readiness Practices

- CRP2. Apply appropriate academic and technical skills.
- CRP4. Communicate clearly and effectively and with reason.
- CRP6. Demonstrate creativity and innovation.
- CRP8. Utilize critical thinking to make sense of problems and persevere in solving them.
- CRP9. Model integrity, ethical leadership and effective management.
- CRP11. Use technology to enhance productivity.

9.2 Career Awareness, Exploration, and Preparation Content Area: $21{ }^{\text {st }}$ Century Life and Careers

Strand C: Career Preparation

- 9.2.8.B. 3 Evaluate communication, collaboration, and leadership skills that can be developed through school, home, work, and extracurricular activities for use in a career.

Career \& Technical Education Content Area: 21 ${ }^{\text {St }}$ Century Life and Careers Standards

- 9.3.ST. 2 Use technology to acquire, manipulate, analyze and report data.
- 9.3.ST-SM. 4 Apply critical thinking skills to review information, explain statistical analysis, and to translate, interpret and summarize research and statistical data.
- 9.3.ST-SM. 3 Analyze the impact that science and mathematics has on society.

Interdisciplinary Connections: Instructional connections through working with authentic scenarios, teachers should help students see how expressions can represent situations in life and will reflect their specific grade-level coursework in other content areas, such as English language arts, reading, science, social studies, world languages, physical education, and fine arts, among others.

Unit 2

Unit 2 Percent, Ratios, and Proportional Relationships

Content \& Practice Standards	SMP	Critical Knowledge \& Skills	Standard Mastery Examples Can be used on formative, summative, benchmark, and alternative assessments.
Topic A 7.RP.A.1. Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured in like or different units.	MP. 2 MP. 4 MP. 6	Concept(s): No new concept(s) introduced Students are able to: - Compute unit rates with ratios of fractions. - Compute unit rates with ratios of fractions representing measurement quantities. in both like and different units of measure. Learning Goal 1: Calculate and interpret unit rates of various quantities involving ratios of fractions that contain like and different units.	Travis was attempting to make muffins to take to a neighbor that had just moved in down the street. The recipe that he was working with required $3 / 4$ cup of sugar and $1 / 8$ cup of butter. Travis accidentally put a whole cup of butter in the mix. What is the ratio of sugar to butter in the original recipe? What amount of sugar does Travis need to put into the mix to have the same ratio of sugar to butter that the original recipe calls for? If Travis wants to keep the ratios the same as they are in the original recipe, how will the amounts of all the other ingredients for this new mixture compare to the amounts for a single batch of muffins? The original recipe called for 38 cup of blueberries. What is the ratio of blueberries to butter in the recipe? How many cups of blueberries are needed in the new enlarged mixture?
Topic B 7.RP.A.2. Recognize and represent proportional relationships between quantities. 7.RP.A.2a. Decide whether two quantities are in a proportional relationship, e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph	MP. 1 MP. 2 MP. 3 MP. 4 MP. 5 MP. 6 MP. 7	Concept(s): - Proportions represent equality between two ratios. - Constant of proportionality Students are able to: - Use tables and graphs to determine if two quantities are in a proportional relationship. - Identify the constant of proportionality (unit rate) in tables, graphs, equations,	1) Nia and Trey both had a sore throat so their mom told them to gargle with warm salt water. Nia mixed 1 teaspoon salt with 3 cups water. Trey mixed 12 teaspoon salt with 112 cups of water. Nia tasted Trey's salt water. She said, "I added more salt so I expected that mine would be more salty, but they taste the same." Explain why the salt water mixtures taste the same. Which of the following equations relates s, the number of teaspoons of salt, with w, the number of cups of water, for both of these mixtures? Choose all

is a straight line through the origin.
7.RP.A.2b. Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships.
7.RP.A.2c. Represent proportional relationships by equations.
7.RP.A.2d. Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points $(0,0)$ and $(1, r)$ where r is the unit rate.
diagrams, and verbal
descriptions of proportional
relationships. relationships.

- Write equations representing proportional relationships.
- Interpret the origin and (1, r) on the graph of a proportional relationship in context.
- Interpret a point on the graph of a proportional relationship in context.

Learning Goal 2: Determine if a proportional relationship exists between two quantities (e.g. by testing for equivalent ratios in a table or graph on the coordinate plane and observing whether the graph is a straight line through the origin).

Learning Goal 3: Identify the

 constant of proportionality (unit rate) from tables, graphs, equations, diagrams, and verbal descriptionsLearning Goal 4: Write equations to model proportional relationships in real world problems

Learning Goal 5: Use the graph of a proportional relationship to interpret the meaning of any point (x, y) on the graph in terms of the situation including the points $(0,0)$ and $(1, r)$, recognizing that r is the unit rate.
that apply.
$\mathrm{s}=1 / 3 \mathrm{w}$
$\mathrm{s}=3 \mathrm{w}$
$\mathrm{s}=1 \quad 1 / 2 \mathrm{w}$
$\mathrm{w}=3 \mathrm{~s}$
$\mathrm{w}=1 / 3 \mathrm{~s}$
$\mathrm{w}=1 / 2 \mathrm{~s}$
2) Coffee costs $\$ 18.96$ for 3 pounds.

What is the cost for one pound of coffee?
At this store, the price for a pound of coffee is the same no matter how many pounds you buy. Let x be the number of pounds of coffee and y be the total cost of x pounds.

Draw a graph of the relationship between the number of pounds of coffee and the total cost.

Where can you see the cost per pound of coffee in the graph? What is it?
3) In January, Georgia signed up for a membership at Anytime Fitness. The plan she chose cost $\$ 95$ in start-up fees and then $\$ 20$ per month starting in February. Edwin also signed up at Anytime Fitness in January. His plan cost $\$ 35$ per month starting in February, and his start-up fees were waived.

Create tables for both Georgia and Edwin that compare the number of months since January to the total cost of their gym memberships. Continue this table for one year.

Decide if either or both gym memberships are described by a proportional relationship, and write an equation representing any such relationship. Explain how parts (a) and (b) could be used to support your answer.
4) The monthly cost of Jazmine's cell phone plan is graphed on the grid below. Her friend Kiara selected a plan that charges $\$ 0.25$ per text, with no

			monthly fee, because she only uses her phone for texting. a. Write an equation to represent the monthly cost of Kiara's plan for any number of texts. b. Graph the monthly cost of Kiara's plan on the grid above. c. Using the graphs above, explain the meaning of the following coordinate pairs: $(0,20):$ $(0,0)$: (10, 2.5): $(100,25):$ d. When one of the girls doubles the number of texts she sends, the cost doubles as well. Who is it? Explain in writing how you know
Topic C 7.NS.A.2. Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers. 7.NS.A.2a. Understand that	$\begin{aligned} & \text { MP. } 2 \\ & \text { MP. } 4 \\ & \text { MP. } 7 \end{aligned}$	Concept(s): - Every quotient of integers (with non-zero divisor) is a rational number. - Decimal form of a rational number terminates in 0s or eventually repeats.	Which of the following is not a terminating or repeating decimal? $\frac{3}{8} \frac{1}{4} \frac{1}{3} \frac{7}{11} \frac{7}{17}$

multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as $(-1)(-1)$ $=1$ and the rules for multiplying signed numbers. Interpret products of rational numbers by describing realworld contexts.
7.NS.A.2b. Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If p and q are integers, then $(p / q)=(-p) / q=p /(-q) .2 \mathrm{c}$.
Interpret quotients of rational numbers by describing real world contexts.
7.NS.A.2d. Convert a rational number to a decimal using long division; know that the decimal form of a rational number terminates in 0 s or eventually repeats.

Topic D
7.EE.B.3. Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions,

- Integers can be divided, provided that the divisor is not zero.

Students are able to:

- Use long division to convert a rational number to a decimal.

Learning Goal 6: Convert a rational number to a decimal using long division and explain why the decimal is either a terminating or repeating decimal. Convert decimals and fractions to percent's.

Kevin Durant made $\frac{9}{11}$ shots in the first quarter of the NBA finals, how is that written as a decimal?

- Katie and Margarita have $\$ 20.00$ each to spend at Students' Choice book store, where all students receive a 20% discount. They both want to purchase a copy of the same book which normally sells for $\$ 22.50$ plus 10% sales tax.
- To check if she has enough to purchase the book, Katie takes 20% of $\$ 22.50$ and subtracts that amount from the normal price. She takes 10% of the discounted selling price and adds it back to find the purchase amount.

and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies.	$\begin{aligned} & \text { MP. } 5 \\ & \text { MP. } 6 \end{aligned}$	problems using rational numbers in any form. - Solve multi-step mathematical problems using rational numbers in any form. - Convert between decimals and fractions and apply properties of operations when calculating with rational numbers. - Estimate to determine the reasonableness of answers. Learning Goal 7: Solve multi-step real life and mathematical problems with rational numbers in any form (fractions, decimals) by applying properties of operations and converting rational numbers between forms as needed. Assess the reasonableness of answers using mental computation and estimation strategies.	- Margarita takes 80% of the normal purchase price and then computes 110% of the reduced price. - Is Katie correct? Is Margarita correct? Do they have enough money to purchase the book?
$\underline{\text { Topic E }}$ 7.RP.A.3. Use proportional relationships to solve multistep ratio and percent problems. Such as simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error.	$\begin{aligned} & \hline \text { MP. } 1 \\ & \text { MP. } 2 \\ & \text { MP. } 4 \\ & \text { MP. } 5 \\ & \text { MP. } 6 \\ & \text { MP. } 7 \end{aligned}$	Concept(s): - Recognize percent as a ratio indicating the quantity per one hundred. Students are able to: - Use proportions to solve multistep percent problems including simple interest, tax, markups, discounts, gratuities, commissions, fees, percent increase, percent decrease, percent error. - Use proportions to solve multistep ratio problems. Learning Goal 8: Solve multi-step	- There were 24 boys and 20 girls in a chess club last year. This year the number of boys increased by 25% but the number of girls decreased by 10%. Was there an increase or decrease in overall membership? Find the overall percent change in membership of the club.

		ratio and percent problems using proportional relationships (simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error)	
Topic F 7.RP.A.3: Use proportional relationships to solve multistep ratio and percent problems. 7.G.A.1: Solve problems involving scale drawings of geometric figures, including computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale.	$\begin{aligned} & \hline \text { MP. } 1 \\ & \text { MP. } 2 \\ & \text { MP. } 4 \\ & \text { MP. } 5 \\ & \text { MP. } 6 \\ & \text { MP. } 7 \end{aligned}$	Concept(s): - Scale and proportion Students are able to: - Use ratios and proportions to create scale drawings. - Reproduce a scale drawing at a different scale. - Computing actual lengths and areas from a scale drawing. - Solve problems involving scale drawings using proportions. Learning Goal 9: Use ratio and proportion to solve problems involving scale drawings of geometric figures.	On the map below, $1 / 4$ inch represents one mile. Candler, Canton, and Oteen are three cities on the map. If the distance between the real towns of Candler and Canton is 9 miles, how far apart are Candler and Canton on the map? If Candler and Oteen are 312 inches apart on the map, what is the actual distance between Candler and Oteen in miles?
Unit 2 Vocabulary			
Equivalent ratios; Indirect me Percent of decrease; Percent	ureme increa	Rate; Scale; Scale drawing; Scale mode imple interest; Isolate variable; Proporti	Similar; Corresponding sides; Corresponding angles; Percent change; Interest ; Gratuity; Commission; Fee; Tax

Suggested Activities/Modifications

Below is a list of suggested activities, modifications, accommodations, and enrichment opportunities. This includes, but is not limited to,:

1. Activities
a. Do Now
b. Classwork
c. Homework
d. One quiz/One test
e. Review Game
2. English Language Learners.
a. Read written instructions.
b. Students may be provided with note organizers / study guides to reinforce key topics.
c. Model and provide examples
d. Extended time on assessments when needed.
e. Establish a non-verbal cue to redirect student when not on task.
f. Students may use a bilingual dictionary.
g. Pair Visual Prompts with Verbal Presentations
h. Highlight Key Words \& Formulas
3. Special Education/504 Students.
a. Students may be provided with note organizers / study guides to reinforce key topics.
b. Extended time on assessments when needed.
c. Preferred seating to be determined by student and teacher.
d. Provide modified assessments when necessary.
e. Student may complete assessments in alternate setting when requested.
f. Establish a non-verbal cue to redirect student when not on task.
g. Maintain strong teacher / parent communication.
h. Repetition and practice
i. Pair Visual Prompts with Verbal Presentations
j. Provide Formulas
k. Check Use of Agenda
4. Gifted and Talented Students.
a. Geography: use unit rate to find 7.RP.1.
b. Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured in like or different units.7.RP.2.
c. Recognize and represent proportional relationships between quantities. 7.RP.3.
d. Use proportional relationships to solve multistep ratio and percent problems.

New Jersey Student Learning Standards - Technology

- 8.1.8.A. 5 Select and use appropriate tools and digital resources to accomplish a variety of tasks and to solve problems.

Career Readiness Practices

- CRP2. Apply appropriate academic and technical skills.
- CRP4. Communicate clearly and effectively and with reason.
- CRP6. Demonstrate creativity and innovation.
- CRP8. Utilize critical thinking to make sense of problems and persevere in solving them.
- CRP9. Model integrity, ethical leadership and effective management.

9.2 Career Awareness, Exploration, and Preparation Content Area: 21 ${ }^{\text {st }}$ Century Life and Careers

Strand C: Career Preparation

- 9.2.8.B.3 Evaluate communication, collaboration, and leadership skills that can be developed through school, home, work, and extracurricular activities for use in a career.

Career \& Technical Education Content Area: 21 ${ }^{\text {st }}$ Century Life and Careers Standards

- 9.3.ST. 2 Use technology to acquire, manipulate, analyze and report data.
- 9.3.ST-SM. 4 Apply critical thinking skills to review information, explain statistical analysis, and to translate, interpret and summarize research and statistical data.
- 9.3.ST-SM. 3 Analyze the impact that science and mathematics has on society.

Interdisciplinary Connections:

- Geography: use unit rate to find population density.
- Social Studies: In elections, delegates are proportional to the population in each state.

Unit 3

Unit 3 Drawing Inferences about Populations \& Probability Models			
Content \& Practice Standards	SMP	Critical Knowledge \& Skills	Standard Mastery Examples Can be used on formative, summative, benchmark, and alternative assessments.
Topic A 7.SP.A.1. Understand that statistics can be used to gain information about a population by examining a sample of the population; generalizations about a population from a sample are valid only if the sample is representative of that population. Understand that random sampling tends to produce representative samples and support valid inferences.	$\text { MP. } 3$ MP. 6	Concept(s) - Statistics can be used to gain information about a population by examining a sample of the population. - Generalizations about a population from a sample are valid only if the sample is representative of that population. - Random sampling tends to produce representative samples. Students are able to: - Analyze and distinguish between representative and non-representative samples of a population. Learning Goal 1: Distinguish between representative and nonrepresentative samples of a population (e.g. if the class had 50% girls and the sample had 10% girls, then that sample was not representative of the	Your teacher is conducting a survey to determine the average age of students in your class. Which of the following would most likely not result in a representative sample? A. Your teacher writes everyone's name down on a piece of paper and draws 10 names from a hat to survey. B. Your teacher chooses only students wearing a red or blue shirt to survey. c. Neither of these would result in a representative sample D. Both of these would result in a representative sample

		population).	
Topic B 7.SP.A.2. Use data from a random sample to draw inferences about a population with an unknown characteristic of interest. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions. For example, estimate the mean word length in a book by randomly sampling words from the book; predict the winner of a school election based on randomly sampled survey data. Gauge how far off the estimate or prediction might be.	$\begin{gathered} \hline \text { MP. } 1 \\ \text { MP. } 2 \\ \text { MP. } 3 \\ \text { MP. } 4 \\ \text { MP. } 6 \end{gathered}$	Concept(s): - Inferences can be drawn from random sampling. Students are able to: - Analyze data from a sample to draw inferences about the population. - Generate multiple random samples of the same size. - Analyze the variation in multiple random samples of the same size. Learning Goal 2: Use random sampling to produce a representative sample. Learning Goal 3: Develop inferences about a population using data from a random sample and assess the variation in estimates after generating multiple samples of the same size.	What is the average amount of time BMS students spend watching TV each week? *the surveying student will randomly ask one student at each cafe. table, during each grade level lunch, how many hours he/she watches TV each week. Based on the average of the data collected we can assume how many hours of TV the entire student body at BMS watches.

Topic C 7.SP.B.3. Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities, measuring the difference between the centers by expressing it as a multiple of a measure of variability.	MP. 1 MP. 2 MP. 3 MP. 4 MP. 5 MP. 6 MP. 7	Concept(s): No new concepts introduced Students are able to: - locate, approximately, the measure of center (mean or median) of a distribution - Visually assess, given a distribution, the measure of spread (mean absolute deviation or interquartile range). - Visually compare two numerical data distributions and describe the degree of overlap. - Measure or approximate the difference between the measures centers and express it as a multiple of a measure of variability. Learning Goal 4: Visually compare the means of two distributions that have similar variability; express the difference between the centers as a multiple of a measure of variability.	Based on visual inspection of the dotplots, which group appears to have the larger average height? Which group appears to have the greater variability in the heights? \square Compute the mean and mean absolute deviation (MAD) for each group. Do these values support your answers in part (a)? \square How many of the 12 basketball players are shorter than the tallest field hockey player? \square Imagine that an athlete from one of the two teams told you she needs to go to practice. You estimate that she is about 65 inches tall. If you had to pick, would you think that she was a field hockey player or that she was a basketball player? Explain your reasoning. \square The women on the Maryland field hockey team are not a random sample of all female college field hockey players. Similarly, the women on the Maryland basketball team are not a random sample of all female college basketball players. However, for purposes of this task, suppose that these two groups can be regarded as random samples of all female college field hockey players and all female college basketball players, respectively. If these were random samples, would you think that female college basketball players are typically taller than female college field hockey players? Explain your decision using answers to the previous questions and/or additional analysis.

Topic D 7.SP.B.4. Use measures of center and measures of variability for numerical data from random samples to draw informal comparative inferences about two populations.	$\begin{aligned} & \hline \text { MP. } 1 \\ & \text { MP. } 2 \\ & \text { MP. } 3 \\ & \text { MP. } 4 \\ & \text { MP. } 5 \\ & \text { MP. } 6 \end{aligned}$	Concept(s): No new concept(s) introduced Students are able to: - Using measures of center, draw informal inferences about two populations and compare the inferences. - Using measures of variability, draw informal inferences about two populations and compare the inferences. Learning Goal 5: Draw informal comparative inferences about two populations using their measures of center and measures of variability.	 A. Based on visual inspection of the dot plots, which group appears to have the larger average weight? Does one group seem to have greater variability in its weights than the other, or do the two groups look similar in that regard? B. Compute the mean and mean absolute deviation (MAD) for each group. Do your measures support your answers in part (a)? C. Choose from the following to fill in the blank: "The average Alabama offensive lineman's weight is about \qquad than the average Mount Union offensive lineman's weight." 1. 20 pounds lighter 2. 15 pounds lighter 3. 15 pounds heavier 4. 20 pounds heavier D. "This difference in average weights is approximately \qquad of either team." 5. About half of the MAD 6. Slightly more than 1 MAD 7. Twice the MAD E. The offensive linemen on the Alabama team are not a random sample from all FBS offensive linemen. Similarly, the offensive linemen on the Mount Union Team are not a random sample from all Division III offensive linemen. However, for purposes of this task, suppose that these two groups can be regarded as random samples of offensive linemen from their respective divisions/subdivisions. If these were random samples, would you think that offensive linemen from FBS schools are typically heavier than offensive linemen from Division III schools? Explain your decision using answers to the previous questions and/or additional analysis.
Topic E 7.SP.C.5. Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate	MP. 4 MP. 5 MP. 6 MP. 7	Concept(s): - Probability of a chance event is a number between 0 and 1 . - Probability expresses the likelihood of the event occurring. - Larger probability indicates greater	Decide where each event would be located on the scale from between 0 and 1. Place the letter for each event in the appropriate place on the probability scale. Event: A. You will see a live dinosaur on the way home from school today. B. A solid rock dropped in the water will sink. C. A round disk with one side red and the other side yellow will land yellow side up when flipped. D. A spinner with four equal parts numbered 1-4 will land on the 4 on the next spin. E. Your full name will be drawn when a full name is selected randomly from a bag

greater likelihood. A probability near 0 indicates an unlikely event, a probability around $1 / 2$ indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.		likelihood. Students are able to: - Draw conclusions about the likelihood of events given their probability. Learning Goal 6: Interpret and express the likelihood of a chance event as a number between 0 and 1 , relating that the probability of an unlikely event happening is near 0 , a likely event is near 1 , and $1 / 2$ is neither likely nor unlikely.	containing the full names of all of the students in your class. F. A red cube will be drawn when a cube is selected from a bag that has five blue cubes and five red cubes. G. Tomorrow the temperature outside will be -250 degrees.
Topic F 7.SP.C.6. Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency, and predict the approximate relative frequency given the probability.	$\begin{gathered} \hline \text { MP. } 1 \\ \text { MP. } 2 \\ \text { MP. } 3 \\ \text { MP. } 4 \\ \text { MP. } 5 \end{gathered}$	Concept(s): - Relative frequency - Experimental probability - Theoretical probability Students are able to: - Collect data on chance processes, noting the longrun relative frequency. predict the approximate relative frequency given the theoretical probability Learning Goal 7: Approximate the	relative frequency = \# of times an event has occurred /\# of trials Probability: will it snow Christmas week? Process: the students will check previous years of weather records during Christmas week, then use formula for relative frequency to determine the probability. Then convert fraction into decimal form then into a percentage. To reverse the prob. to relative frequency is to change percentage to a decimal and then to a fraction.

		probability of a chance event by collecting data and observing long-run relative frequency; predict the approximate relative frequency given the probability	
Topic G 7.SP.C.7. Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy. 7.SP.C.7a. Develop a uniform probability model by assigning equal probability to all outcomes, and use the model to determine probabilities of events. 7.SP.C.7b. Develop a probability model (which may not be uniform) by observing frequencies in data generated from a chance process.	MP. 1 MP. 2 MP. 4 MP. 6	Concept(s): - Uniform (equally likely) and nonuniform probability models Students are able to: - Develop a uniform probability model. - Use a uniform probability model to determine the probabilities of events. - Develop (nonuniform) probability models by observing frequencies in data that has been generated from a chance process. Learning Goal 8: Develop a uniform probability model by assigning equal probability to all outcomes; develop probability models by observing frequencies and use the models to	Problem Set Jerry and Michael played a game similar to Picking Blue! The following results are from their research using the same two bags: Jerry's Research: Number of Red Chips Picked Bag A 2 Bag B 3 Number of Blue Chips Picked Bag A 8 Bag B 7 Michael's Research: Number of Red Chips Picked Bag A 28 Bag B 22 Number of Blue Chips Picked: Bag A 12 Bag B 18 1. If all you knew about the bags were the results of Jerry's research, which bag would you select for the game? 2. If all you knew about the bags were the results of Michael's research, which bag would you select for the game? Explain your answer. 3. Does Jerry's research or Michael's research give you a better indication of the makeup of the blue and red chips in each bag? Explain why you selected this research.

		determine probabilities of events; compare probabilities from a model to observed frequencies and explain sources of discrepancy when agreement is not good	4. Assume there are 12 chips in each bag. Use either Jerry's or Michael's research to estimate the number of red and blue chips in each bag. Then, explain how you made your estimates. Bag A Bag B Number of red chips: Number of red chips: Number of blue chips: Number of blue chips: 5. In a different game of Picking Blue!, two bags each contain red, blue, green, and yellow chips. One bag contains the same number of red, blue, green, and yellow chips. In the second bag, half of the chips are blue. Describe a plan for determining which bag has more blue chips than any of the other colors.
Topic H 7.SP.C.8. Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation. 7.SP.C.8a. Understand that, just as with simple events, the probability of a compound event is the fraction of outcomes in the sample space for which the compound event occurs. 7.SP.C.8b. Represent sample spaces for compound events using methods such as organized lists, tables and tree diagrams. For an event described in everyday language (e.g., "rolling double sixes"), identify the outcomes in	$\begin{aligned} & \hline \text { MP. } 1 \\ & \text { MP. } 2 \\ & \text { MP. } 4 \\ & \text { MP. } 5 \\ & \text { MP. } 7 \\ & \text { MP. } 8 \end{aligned}$	Concept(s): - Just as with simple events, the probability of a compound event is the fraction of outcomes in the sample space. Students are able to: - Use organized lists, tables, and tree diagrams to represent sample spaces. - Given a description of an event using everyday language, identify the outcomes in a sample space that make up the described event. - Design simulations. use designed simulations to generate frequencies for compound events. Learning Goal 9: Represent sample spaces	A drawer contains 5 brown socks, 6 black socks, and 9 navy blue socks. The power is out. What is the probability that Sam chooses two socks that are both black? The probability that it will snow on Sunday is . The probability that it will snow on both Sunday and Monday is . What is the probability that it will snow on Monday, if it snowed on Sunday?

$\left.\left.\begin{array}{|l|l|l|}\hline \begin{array}{l}\text { the sample space which } \\ \text { compose the event. }\end{array} & & \begin{array}{l}\text { for compound events using } \\ \text { methods such as organized }\end{array} \\ \text { 7.SP.C.8c. Design and } \\ \text { lists, tables and tree } \\ \text { generate frequencies for } \\ \text { compound events }\end{array} \quad \begin{array}{l}\text { diagrams, identifying the } \\ \text { outcomes in the sample } \\ \text { space which compose the } \\ \text { event. Use the sample } \\ \text { space to find the } \\ \text { probability of a compound } \\ \text { event. } \\ \text { Learning Goal 10: Design }\end{array}\right\} \begin{array}{l}\text { and use a simulation to } \\ \text { generate frequencies for } \\ \text { compound events. }\end{array}\right\}$

Unit 3 Vocabulary

Chance Experiment ; Chance Process; Event; Simple event; Sample Space; Frequency of an Event; Population; Probability Simulation (illustration); Random; Sample; Sample Size; Relative Frequency of an Event; Sample; Mean ; Median; Mode; Range; Box and Whisker plot; Independent event; Dependent event; Combinations; Permutations; Theoretical Probability; Experimental Probability

Suggested Activities/Modifications

Below is a list of suggested activities, modifications, accommodations, and enrichment opportunities. This includes, but is not limited to,:

1. Activities
a. Practice/review games
b. Task cards
c. One quiz and one test
2. English Language Learners.

a.	Read written instructions.
b.	Model and provideexamples
c.	Extended time on assessments when needed.
d.	Establish a non-verbal cue to redirect student when not on task.
e.	Students may use a bilingual dictionary.
3.Special a. Education/504 Students.	
b.	Sxtents may be provided with note organizers / study guides to reinforce key topics.
c.	Preferred seating to be determined by student and teacher.
d.	Provide modified assessments when necessary.
e.	Student may complete assessments in alternatesetting when requested.
f.	Establish a non-verbal cue to redirect student when not on task.
g.	Maintain strong teacher / parent communication.

Unit 4

Unit 4 Factors and Exponents			
 Practice Standards	SMP	Critical Knowledge \& Skills	Standard Mastery Examples Can be used on formative, summative, benchmark, and alternative assessments.
Topic A 8.EE.A.1. Know and apply the properties of integer exponents to generate equivalent numerical expressions. For example, $\begin{aligned} & 3^{2} \times 3^{-5}=3^{-3} \\ & =1 / 3^{3}= \\ & 1 / 27 . \end{aligned}$	MP. 1 MP. 2 MP. 4 MP. 5 MP. 6 MP. 7 MP. 8	Concept(s): - Exponents as simplified representation of repeated multiplication. Students are able to: - Apply properties of exponents to numerical expressions. - Generate equivalent numerical expressions using positive and negative integer exponents. Learning Goal 1: Apply the properties of integer exponents to write equivalent numerical expressions.	Which expressions are equivalent to $\frac{3^{-8}}{3^{-4}}$? Select all that apply. A. 3^{-12} B. 3^{-4} C. 3^{2} D. $\frac{1}{3^{2}}$ E. $\frac{1}{3^{4}}$ F. $\frac{1}{3^{12}}$
Topic B 8.EE.A.3. Use numbers expressed in	MP.2. MP. 4 MP. 5	Concept(s): - Very large and very small	You and your friend thinks that 4×10^{3} is twice as great as 2×10^{2}. What error is your friend making? Explain your reasoning. How many times bigger is the distance from Earth to the sun of 9.3×10^{6} miles than the furthest distance from Earth to the moon of 3×10^{25} miles?

the form of a single digit times an integer power of 10 to estimate very large or very small quantities, and to express how many times as much one is than the other.	MP. 6 MP. 7 MP. 8	quantities can be approximated with numbers expressed in the form of a single digit times an integer power of 10 . Students are able to: - Estimate very large and very small quantities with numbers expressed in the form of a single digit times an integer power of 10 . - Compare numbers written in the form of a single digit times an integer power of 10 and express how many times as much one is than the other. Learning Goal 2: Estimate and express	Order from least to greatest $2.6 \times 10^{4} ; 3500 ; 9.2 \times 10^{4}$. Let n be any positive integer. Consider the expressions $\mathrm{n} \times 10^{\mathrm{n}+1}$ and $(\mathrm{n}+1) \times 10^{\mathrm{n}}$. a. Make a table of values for each expression $n=1,2,3$, and 4 . b. Is the value $n \times 10^{n+1}$ always, sometimes, or never greater than the value of $(n+1) \times 10^{n}$ The body of a 154-pound person contains approximately 2×10^{-1} milligrams of gold and 6×10^{1} milligrams of aluminum. Based on this information, the number of milligrams of aluminum in the body is how many times the number of milligrams of gold in the body?

		the values of very large or very small numbers with numbers expressed in the form of a single digit times an integer power of 10. Compare numbers expressed in this form, expressing how many times larger or smaller one is than the other.	
Topic C 7.EE.A.1. Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.	$\text { MP. } 2$ $\text { MP. } 7$	Concept(s): No new concept(s) introduced Students are able to: - Factor and expand linear expressions having rational coefficients, using properties of operations. - Find the gcf and lcm of a monomial Learning Goal 3: Apply properties of operations as strategies to add, subtract, multiply, and divide rational numbers.	- Find the greatest common factor of the monomials: $16 a^{4} b^{2}, 40 a b$ - Find the LCM of the monomials: $15 \mathrm{~cd}, 25 \mathrm{~cd}^{3}$
Topic D 7.NS.A.2. Apply and extend previous	$\begin{aligned} & \text { MP. } 1 \\ & \text { MP. } 2 \\ & \text { MP. } 4 \end{aligned}$	Concept(s): - The process for multiplying and dividing fractions extends to	$\frac{3 x y}{8} \cdot \frac{4 x y}{7}$

understandin gs of multiplication and division and of fractions to multiply and divide rational numbers. MP.6 multiplying and dividing to simplify algebraic expressions Students are able to:
multiply and divide to simplify and algebraic expressions Learning Goal 4: Apply properties of operations as strategies to add, subtract, multiply, and divide rational numbers.

Suggested Activities/Modifications

Below is a list of suggested activities, modifications, accommodations, and enrichment opportunities. This includes, but is not limited to,:

1. Activities
a. Do Now
b. Practice/Review Game
c. Desmos www.desmos.com

d. One quiz and one test

2. English Language Learners.
a. Read written instructions.
b. Students may be provided with note organizers / study guides to reinforce key topics.
c. Model and provide examples
d. Extended time on assessments when needed.
e. Establish a non-verbal cue to redirect student when not on task.
f. Students may use a bilingual dictionary.
g. Pair Visual Prompts with Verbal Presentations
h. Highlight Key Words \& Formulas
3. Special Education/504 Students.
a. Students may be provided with note organizers / study guides to reinforce key topics.
b. Extended time on assessments when needed.
c. Preferred seating to be determined by student and teacher.
d. Provide modified assessments when necessary.
e. Student may complete assessments in alternate setting when requested.
f. Establish a non-verbal cue to redirect student when not on task.
g. Maintain strong teacher / parent communication.
h. Repetition and practice
i. Pair Visual Prompts with Verbal Presentations
j. Provide Formulas
k. Check Use of Agenda
4. Gifted and Talented Students.
a. Use of Higher Level Questioning Techniques
b. Extension/Challenge Questions
c. Provide Assessments at a Higher Level of Thinking
d. Graph the functions $\mathrm{y}=\mathrm{x} 2$ and $\mathrm{y}=2 \mathrm{x}$ on the same set of axes on a graphing calculator.
a. What happens to the graphs between $\mathrm{x}=1$ and $\mathrm{x}=3$?
b. How do you think the graph of $y=6 x$ would compare to the graphs of $y=x 2$ and $y=2 x$?

New Jersey Student Learning Standards - Technology

- 8.1.8.A. 5 Select and use appropriate tools and digital resources to accomplish a variety of tasks and to solve problems.

Career Readiness Practices

- CRP2. Apply appropriate academic and technical skills.
- CRP4. Communicate clearly and effectively and with reason
- CRP6. Demonstrate creativity and innovation.
- CRP8. Utilize critical thinking to make sense of problems and persevere in solving them.
- CRP9. Model integrity, ethical leadership and effective management.
- CRP11. Use technology to enhance productivity.

9.2 Career Awareness, Exploration, and Preparation

- 9.2.8.B.3 Evaluate communication, collaboration, and leadership skills that can be developed through school, home, work, and extracurricular activities for use in a career.

Career \& Technical Education Content Area: $\mathbf{2 1}^{\text {st }}$ Century Life and Careers Standards

- 9.3.ST. 2 Use technology to acquire, manipulate, analyze and report data.
- 9.3.ST-SM. 4 Apply critical thinking skills to review information, explain statistical analysis, and to translate, interpret and summarize research and statistical data.
- 9.3.ST-SM. 3 Analyze the impact that science and mathematics has on society.

Interdisciplinary Connections: Light travels through space at a constant speed of about $3.5 \times 10^{\wedge} 5 \mathrm{~km} / \mathrm{s}$. Earth is about $1.5 \times 10^{\wedge} 8 \mathrm{~km}$ from the sun. How long does it take for light from the sun to reach the earth?

Unit 5

Unit 5 Functions, Equations, and Solutions			
Content \& Practice Standards	SMP	Critical Knowledge \& Skills	Standard Mastery Examples Can be used on formative, summative, benchmark, and alternative assessments.
Topic A 8.F.A.1. Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.	$\overline{\text { MP. } 2}$ MP. 5	Concept(s): - A function is a rule. - If a rule is a function, then for each input there is exactly one output. Students are able to: - Use function language. - Describe a function as providing a single output for each input. - Determine whether non-numerical relationships are functions. - Describe a function as a set of ordered pairs. - Read inputs and outputs from a graph. - Describe the ordered pairs as containing an input, and the corresponding output. Learning Goal 1: Define a function as a rule that assigns one output to each input and determine if data represented as a graph or in a table is a function.	A relationship between x and y is defined by the equation $y=-\frac{4}{3} x+\frac{1}{3}$, where x is the input and y is the output. Which statements about the relationshif are true? Select each correct statement. A y is a function of x. B The graph of the relationship is a line. C When the input is -3 , the output is 4 . D When the input is -2 , the output is 3 . E The y-intercept of the relationship is $(0,1)$.
Topic B 8.F.A.2. Compare properties (e.g. rate of change,	MP. 5 MP. 8	Concept(s): - Functions (quantitative relationships) can be	- You have $\$ 20$ in savings at the bank. Each week, you add $\$ 4$ to your savings. Your friend has $\$ 30$ in a savings at the bank. Each week she adds $\$ 2$ to her savings. Let y represent the total amount of money you have saved at the end of x weeks. Write an equation to represent each situation and

intercepts, domain and range) of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).		represented in different ways. - Functions have properties; properties of linear functions. Students are able to: - Analyze functions represented algebraically, as a table of values, and as a graph. - Interpret functions represented by a verbal description. - Given two functions, each represented in a different way, compare their properties. Learning Goal 2: Compare two functions each represented in a different way (numerically, verbally, graphically, and algebraically) and draw conclusions about their properties (rate of change and intercepts).	identify the slopes. Create a table and graph the linear equations. What do the slopes represent? Who has the greater rate of savings?
Topic C 8.F.A. 3 Interpret the equation $y=m x+b$ as defining a linear function, whose graph is a straight line; give examples of functions that are not linear..	MP. 2 MP. 3 MP. 5	Concept(s): - A linear function is defined by the equation $y=m x+b$. - The graph of a linear function is a straight line. Students are able to: - Analyze tables of values, graphs, and equations in order to classify a function as linear or non-linear. - Determine if equations presented in forms other than y $=m x+b$ (for example $3 y-2 x$ $=7$) define a linear function. - Give examples of equations	A cinder cone is a type of volcano. To describe the steepness of a cinder cone from one point on the cone to another, you can find the gradient between the two points. Graph $\mathrm{A}(0,0), \mathrm{B}(0.1,400)$, and $\mathrm{C}(0.2,500)$. Graph the function and determine whether the graph is linear. How would you find the gradient between any two points?

		that are non-linear functions. - Show that a function is not linear using pairs of points. Learning Goal 3: Classify functions as linear or non-linear by analyzing equations, graphs, and tables of values; interpret the equation $y=m x+b$ as defining a linear function.	
Topic D 8.F.B.4. Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.	MP. 2 MP. 6 MP. 7	Concept(s): - As with equations, two (x, y) values can be used to construct a function. Students are able to: - Determine the rate of change and initial value of a function from a description of a relationship. - Determine the rate of change and initial value of a function from two (x, y) values by reading from a table of values. - Determine the rate of change and initial value of a function from two (x, y) values by reading these from a graph. - Construct a function in order to model a linear relationship. - Interpret the rate of change and initial value of a linear function in context. Learning Goal 4: Model a linear relationship by constructing a function from two (x,y) values. Interpret the rate of change and initial value of the linear function in terms of the situation it	The table of values below represents the number of pages that Anne can type, y , in a few selected x minutes. Assume she types at a constant rate. Use the table below to determine the slope or Anne's constant rate of typing.

		models, and in terms of its graph or a table of values.	
Topic E 8.F.B.5. Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.	MP. 1 MP. 2 MP. 4 MP. 5	Concept(s): No new concept(s) introduced Students are able to: - Analyze a graph. - Provide qualitative descriptions of graphs (e.g. where increasing or decreasing, linear or nonlinear). - Given a verbal description, sketch a graph of a function based on the qualitative features described. Learning Goal 5: Sketch a graph of a function from a qualitative description and give a qualitative description of a graph of a function.	1. The graph below shows the relationship between a car's value and time. Match each part of the graph (A, B, and C) to its verbal description. Explain the reasoning behind your choice. i. The value of the car holds steady due to a positive consumer report on the same model. ii. There is a shortage of used cars on the market, and the value of the car rises at a constant rate. iii. The value of the car depreciates at a constant rate.
Topic F 8.EE.C.7. Solve linear equations in one variable.	$\begin{aligned} & \hline \text { MP. } 5 \\ & \text { MP. } 6 \end{aligned}$	Concept(s): - Linear equations may have an infinite number of solutions. - Linear equations may have no solution or a single solution. Students are able to: - Give examples of linear equations in one variable with one solution $(x=a)$, infinitely many solutions ($a=a$), or no solutions ($a=b$.) - Transform a given equation,	$.84-.09 x=.3(.25 x-1.6)$

		using the properties of equality, into simpler forms. - Transform a given equation until an equivalent equation of the form $x=a, a=a$, or $a=b$ results (a and b are different numbers). - Solve linear equations that have fractional coefficients; include equations requiring use of the distributive property and collecting like terms. Learning Goal 6: Apply the distributive property and collect like terms to solve linear	
Topic G 8.EE.C.8. Analyze and solve pairs of simultaneous linear equations.	MP. 1 MP. 2 MP. 6 MP. 7	Concept(s): - Simultaneous linear equations may have an infinite number of solutions. - Simultaneous linear equations may have no solution or a single solution. - Solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs. Students will be able to: - Solve systems of two linear equations in two variables algebraically. - Estimate solutions of a linear system of two equations by graphing. - Solve simple cases of a linear system of two equations by inspection.	What is the solution of the system of linear equations provided on the graph? A $(0,1)$ B $(1,0)$ C $(6,3)$ D $(3,6)$ Consider the system of equations. $\begin{aligned} & y=2 x+2 \\ & y=6 x+2 \end{aligned}$ Select from the drop-down menus to correctly complete each statement. The graph of the system consists of lines that have \qquad of intersection. Therefore, A no points B exactly one point C more than one point the system has \qquad solution. D no E exactly one F more than one

- Solve real-world and mathematical problems leading to two linear equations in two variables.

Learning Goal 7: Solve systems of linear equations in two variables algebraically and by inspection. Estimate solutions by graphing, explain that points of intersection satisfy both equations simultaneously, and interpret solutions in context

Unit 5 Vocabulary

Function; input; output; domain; range; ordered pair; non-linear function; linear function; $y=m x+b$; systems of linear equations; point of intersection and one ; solution; no solution; infinite solutions

Suggested Activities/Modifications

Below is a list of suggested activities, modifications, accommodations, and enrichment opportunities. This includes, but is not limited to,:
5. Activities
a. Practice/review games
b. One quiz and one test
6. English LanguageLearners.
a. Read written instructions.
b. Model and provideexamples
c. Extended time on assessments when needed.
d. Establish a non-verbal cue to redirect student when not on task.
e. Students may use a bilingual dictionary.
7. Special Education/504 Students.
a. Students may be provided with note organizers / study guides to reinforce key topics.
b. Extended time on assessments when needed.
C. Preferred seating to be determined by student and teacher.
d. Provide modified assessments when necessary.
e. Student may complete assessments in alternate setting when requested.
f. Establish a non-verbal cue to redirect student when not on task.
g. Maintain strong teacher / parent communication.
8. Gifted and TalentedStudents.
a. Compare and contrast the procedures for solving equations with a variable on one sides and an equation with variables on both sides. $7=2 \mathrm{x}+1 ; 5 \mathrm{x}-3=3 \mathrm{x}+7$

New Jersey Student Learning Standards - Technology

- 8.1.8.A. 5 Select and use appropriate tools and digital resources to accomplish a variety of tasks and to solve problems.
o As you work through this unit, you will use equations to help model your personal finances. You will develop spreadsheets to analyze your weekly budget, including regular savings. You will use percents to create graphs. Then you will display and present your budget plan using the graphs and spreadsheets.

Career Readiness Practices

- CRP2. Apply appropriate academic and technical skills.
- CRP4. Communicate clearly and effectively and with reason.
- CRP6. Demonstrate creativity and innovation.
- CRP8. Utilize critical thinking to make sense of problems and persevere in solving them.
- CRP9. Model integrity, ethical leadership and effective management.

9.2 Career Awareness, Exploration, and Preparation Content Area: 21 ${ }^{\text {st }}$ Century Life and Careers Strand C: Career Preparation

- 9.2.8.B.3 Evaluate communication, collaboration, and leadership skills that can be developed through school, home, work, and extracurricular activities for use in a career.

Interdisciplinary Connections:

- To convert from Celsius to Fahrenheit, you can get an estimate by using this rule: multiply the Celsius temperature by 2, and then add 30 . Use this strategy to convert $4^{\circ} \mathrm{C}, 15^{\circ} \mathrm{C}$, and $50^{\circ} \mathrm{C}$.

III. Additional Differentiation/Modifications for Teaching

Research-Based Effective Teaching Strategies	Additional Modifications for G\&T	Additional Strategies for Special Education	Additional Strategies for English Language Learners
Questioning techniques to facilitate learning - See also Five Practices for Orchestrating Math Discussion Math Discourse - Talk Moves Constructivist learning opportunities - Piaget, Vygotsky, Bruner Multiple Representations Promote linguistic and nonlinguistic representations Various types of feedback - Student to student feedback - Teacher to student feedback Varied opportunities for students to communicate mathematically (orally, writing) Use technological and /or physical tools (manipulatives)	See EngageNY Grade 7 for Classroom Differentiation for Gifted Students. See EngageNY Grade 8 for Classroom Differentiation for Gifted Students.	See EngageNY Grade 7 for Classroom Differentiation for information on Special Need Students.	Extension: See EngageNY Grade 7 for Scaffolding Instruction for English Language Learners. ELD Standard Standard 3 - Language of Mathematics English language learners communicate information, ideas and concepts necessary for academic success in the content area of mathematics.

IV. Instructional Resources and Materials

Formative Assessment	Summative Assessment	Supplementa	Resources	Print Resource
Short constructed responses Extended constructed responses Teacher Observation Checks for understanding Do Now Exit Tickets Problem Sets (EngageNY) Sprints (EngageNY) Extension - See additional performance tasks in the Unit Standards Overview.	End-of-Module Assessment (EngageNY) Mid-Module Assessment (EngageNY)	Teacher Resources Annenberg Learning Mathematics Assessment Projects Achieve the Core Mathplanet.com Interactive Mathematics.com Illustrative Mathematics Inside Mathmatics.org EdConnect.org Prodigy Desmos iReady Khan Academy	Student Resources Khan Academy Prodigy iReady Math is Fun (website) Virtual Nerd Engage NY (website) Engage NY (Homework Helpers) A Math Dictionary for Kids	Eureka Math - Engage NY Grade 7 Mathematics Eureka Math - Engage NY Grade 8 Mathematics

Math 7 Accelerated Pacing Guide

Accelerated Math 7

