TOWNSHIP OF UNION PUBLIC SCHOOLS

Grade 8 Mathematics

Adopted June 20, 2017

Updated December 18, 2018

Mission Statement

The mission of the Township of Union Public Schools is to build on the foundations of honesty, excellence, integrity, strong family, and community partnerships. We promote a supportive learning environment where every student is challenged, inspired, empowered, and respected as diverse learners. Through cultivation of students' intellectual curiosity, skills and knowledge, our students can achieve academically and socially, and contribute as responsible and productive citizens of our global community.

Philosophy Statement

The Township of Union Public School District, as a societal agency, reflects democratic ideals and concepts through its educational practices. It is the belief of the Board of Education that a primary function of the Township of Union Public School System is to formulate a learning climate conducive to the needs of all students in general, providing therein for individual differences. The school operates as a partner with the home and community.

Course Description

In Grade 8, instructional time should focus on three critical areas: (1) formulating and reasoning about expressions and equations, including modeling an association in bivariate data with a linear equation, and solving linear equations and systems of linear equations; (2) grasping the concept of a function and using functions to describe quantitative relationships; (3) analyzing two- and three-dimensional space and figures using distance, angle, similarity, and congruence, and understanding and applying the Pythagorean Theorem.

Recommended Textbooks:

Eureka Math - EngageNY Grade 8

Curriculum Units

Unit 1: Integer Exponent and Scientific Notation, Congruency
Unit 2: Similarity, Linear Equations
Unit 3: Functions
Unit 4: Statistics and Probability: Scatterplots and Association
I. Unit Standards Overview

Overview	Standards for Mathematical Content	Unit Focus	Standards for Mathematical Practice
Unit 1 Exponents, Expressions, and Equations	\square 8.EE.A. 1 \square 8.G.C. 9 \square 8.EE.A.3 \square 8.E.A.A. 4 \square 8.NS.A. 2 \square 8.EE.B.5 \square 8.EE.B.6	- Work with integer exponents - Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres - Know that there are numbers that are not rational, and approximate them by rational numbers - Understand the connections between proportional relationships, lines, and linear equations	
Unit 1: Suggested Open Educational Resources	8.EE.A. 1 Extending the 8.G.C. 9 A Canister of Te 8.EE.A. 3 Ant and Elepha 8.EE.A. 4 Giantburgers 8.NS.A. 1 Converting Dec Representations 8.NS.A. 2 Irrational Numb 8.EE.B. 5 Who Has the B 8.EE.B. 6 Slopes Between	initions of Exponents is Balls nal Representations of Rational Numbers to Fraction s on the Number Line Job? oints on a Line	MP. 1 Make sense of problems and persevere in solving them. MP. 2 Reason abstractly and quantitatively. MP. 3 Construct viable arguments \& critique the reasoning. of others.

Overview	Standards for Mathematical Content	Unit Focus	Standards for Mathematical Practice
Unit 2 Functions, Equations, and Solutions	8.F.A. 1 8.F.A. 2 8.F.A. 3 8.F.B. 4^{*} 8.F.B. 5 8.EE.C. 7 8.EE.C. ${ }^{*}$	- Define, evaluate, and compare functions - Use functions to model relationships between quantities - Analyze and solve linear equations and simultaneous linear equations	MP. 4 Model with mathematics. MP. 5 Use appropriate tools strategically..
Unit 2: Suggested Open Educational Resources	8.F.A. 1 Function Rules 8.F.A. 2 Battery Charging 8.F.A. 3 Introduction to L 8.F.B. 4 Chicken and Ste 8.F.B. 4 Baseball Cards 8.EE.C. 7 The Sign of So 8.EE.C. 7 Coupon versus 8.EE.C.8a Intersection of 8.EE.C. 8 How Many Sol	ar Functions Variation 1 ons count wo Lines ons	MP. 6 Attend to precision. MP. 7 Look for and make use of structure. MP. 8 Look for and express regularity in repeated reasoning.
Unit 3 Geometry: Pythagorean Theorem,	8.EE.A. 2 8.G.C. 9 8.G.B.6 8.G.B. 7 8.G.B.8*	- Work with radicals and integer exponents - Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres - Understand and apply the Pythagorean Theorem	

Overview	Standards for Mathematical Content Unit Focus	Standards for Mathematical Practice
Unit 4: Suggested Open Educational Resources	8.SP.A. 1 Texting and Grades 1 8.SP.A. 2 Animal Brains 8.SP.A. 3 US Airports 8.SP.A. 4 What's Your Favorite Subject 8.SP.A. 4 Music and Sports 8.F.B. 4 Delivering the Mail 8.G.B. 8 Finding the distance between points 8.EE.C. 8 Kimi and Jordan	MP. 5 Use appropriate tools strategically.. MP. 6 Attend to precision. MP. 7 Look for and make use of structure. MP. 8 Look for and express regularity in repeated reasoning.

II. Units

Unit 1

Unit 1 Exponents, Expressions, and Equations			
Content \& Practice Standards	SMP	Critical Knowledge \& Skills	Standard Mastery Examples Can be used on formative, summative, benchmark, and alternative assessments.
MODULE 1 - Topic A: Exponential Notation and Properties of Integer Exponents	MP. 1 Make sense of problems and persevere in solving them. MP. 2 Reason abstractly and quantitatively. MP. 3 Construct viable arguments \& critique the reasoning of others. MP. 4 Model with mathematics. MP. 7 Look for and make use of structure.		*Standards Mastery Examples are hyperlinked.
Lesson 1: Exponential Notation 8.EE.A. 1 Know and apply the properties of integer exponents to generate equivalent numerical expressions.		In Topic A, Lesson 1, students begin by learning the precise definition of exponential notation where the exponent is restricted to being a positive integer.	Lesson 1
Lesson 2: Multiplication of Numbers in Exponential Form 8.EE.A. 1 Know and apply the properties of integer exponents to generate equivalent numerical expressions.		In Lesson 2, students discern the structure of exponents by relating multiplication and division of expressions with the same base to combining like terms using the distributive property, and by relating multiplying 3 factors using the associative property to	$\underline{\text { Lesson } 2}$

	raising a power to a power.	
Lesson 3: Numbers in Exponential Form Raised to a Power 8.EE.A. 1 Know and apply the properties of integer exponents to generate equivalent numerical expressions.	In Lesson 3, students discern the structure of exponents by relating multiplication and division of expressions with the same base to combining like terms using the distributive property, and by relating multiplying 3 factors using the associative property to raising a power to a power.	Lesson 3
Lesson 4: Numbers Raised to the Zeroth Power 8.EE.A. 1 Know and apply the properties of integer exponents to generate equivalent numerical expressions.	In Lesson 4, students expand the definition of exponential notation to include what it means to raise a nonzero number to a zero power; students verify that the properties of exponents developed in Lessons 2 and 3 remain true.	Lesson 4
Lesson 5: Negative Exponents and the Laws of Exponents 8.EE.A. 1 Know and apply the properties of integer exponents to generate equivalent numerical expressions.	In Lesson 5, students accept the properties of exponents as true for all integer exponents and are shown the value of learning them, i.e., if the three properties of exponents are known, then facts about dividing numbers in exponential notation with the same base and raising fractions to a power are also known.	Lesson 5
Lesson 6: Proofs of Laws of Exponents 8.EE.A. 1 Know and apply the properties of integer exponents to generate equivalent numerical expressions.	In Lesson 6, students work to prove the laws of exponents for all integer exponents.	Lesson 6
MODULE 1 - Topic B: Magnitude and Scientific Notation		
Lesson 7: Magnitude 8.EE.A. 3 Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities, and to express how many times as much one is than the other.	In Lesson 7, students learn that positive powers of 10 are large numbers and negative powers of 10 are very small numbers.	Lesson 7

\(\left.$$
\begin{array}{|l|l|l|}\hline \begin{array}{l}\text { notation are used. Use scientific notation and } \\
\text { choose units of appropriate size for } \\
\text { measurements of very large or very small } \\
\text { quantities (e.g., use millimeters per year for } \\
\text { seafloor spreading). Interpret scientific notation } \\
\text { that has been generated by technology. }\end{array} & & \\
\hline \begin{array}{l}\text { Lesson 12: Choice of Unit } \\
\text { 8.EE.A.4 Perform operations with numbers } \\
\text { expressed in scientific notation, including } \\
\text { problems where both decimal and scientific } \\
\text { notation are used. Use scientific notation and } \\
\text { choose units of appropriate size for } \\
\text { measurements of very large or very small } \\
\text { quantities (e.g., use millimeters per year for } \\
\text { seafloor spreading). Interpret scientific notation } \\
\text { that has been generated by technology. }\end{array} & & \begin{array}{l}\text { In Lesson 12, there is an opportunity for } \\
\text { students to understand why certain units were } \\
\text { developed, like the gigaelectronvolt. Given a } \\
\text { list of very large numbers, students choose a } \\
\text { unit of appropriate size and then rewrite }\end{array}
$$

numbers in the new unit to make\end{array}\right]\)| Lemparisons easier. |
| :--- |

Lesson 1: Why Move Things Around? 8.G.A.1 Verify experimentally the properties of rotations, reflections, and translations: a. Lines are taken to lines, and line segments to line segments of the same length. b. Angles are taken to angles of the same measure. c. Parallel lines are taken to parallel lines.		In Topic A, students learn about the mathematical needs for rigid motions and begin by exploring the possible effects of rigid motions in Lesson 1.
Lesson 2: Definition of Translation and Three Basic Properties		In Lesson 2, students learn the basics of translation by translating points, lines, and figures along a vector, and students verify experimentally that translations map lines to lines, segments to segments, rays to rays, and angles to angles.
8.G.A.1 Verify experimentally the properties of rotations, reflections, and translations: a. Lines are taken to lines, and line segments to line segments of the same length. b. Angles are taken to angles of the same measure. c. Parallel lines are taken to parallel lines.		Lesson 2
Lesson		Lesson 3 focuses on the translation of lines, specifically the idea that a translation maps a line either to itself or to a parallel line.
8.G.A.1 Verify experimentally the properties of rotations, reflections, and translations: c. Parallel lines are taken to parallel lines.		Lesson 3 8.G.A.1 Verify experimentally the properties of rotations, reflections, and translations: a. Lines are taken to lines, and line segments to
investigated in a similar manner as the other		
rigid motions.		

line segments of the same length. b. Angles are taken to angles of the same measure. c. Parallel lines are taken to parallel lines.		
Lesson 6: Rotations of 180 Degrees 8.G.A.1 Verify experimentally the properties of rotations, reflections, and translations: a. Lines are taken to lines, and line segments to line segments of the same length. b. Angles are taken to angles of the same measure. c. Parallel lines are taken to parallel lines.	In Lesson 6, students are provided proof that -degree rotations map a line to a parallel line and use that knowledge to prove that vertical angles are equal.	Lesson 6
and		
MODULE 2 - Topic B: Sequencing the Basic Rigid Motions		Lesson 7 begins with the concept of composing translations and introduces the idea that translations can be undone.
Lesson 7: Sequencing Translations 8.G.A.2 Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them.		In Lesson 9, students explore with sequences of rotations around the same center and
Lesson 8: Sequencing Reflections and Translations 8.G.A.2 Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them.		In Lesson 8, students explore images of figures under a sequence of reflections and translations.

figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them.		rotations around different centers.	
Lesson 10: Sequences of Rigid Motions 8.G.A. 2 Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them.		In Lesson 10, students perform sequences of translations, rotations, and reflections as a prelude to learning about congruence.	$\underline{\text { Lesson } 10}$
MODULE 2 - Topic C: Congruence and Angle Relationships			
Lesson 11: Definition of Congruence and Some Basic Properties 8.G.A. 2 Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them.		Topic C finishes the work of 8.G.A. 2 by introducing the concept of congruence as mapping one figure onto another using a sequence of rigid motions. Lesson 11 defines congruence in terms of a sequence of the basic rigid motions (i.e., translations, reflections, and rotations).	Lesson 11
Lesson 12: Angles Associated with Parallel Lines 8.G.A. 5 Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles.		In Lesson 12, students show why corresponding angles are congruent using translation and why alternate interior angles are congruent using rotation.	Lesson 12
Lesson 13: Angle Sum of a Triangle 8.G.A. 5 Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when		In Lessons 13 and 14, the knowledge of rigid motions and angle relationships is put to use to develop informal arguments to show that the sum of the degrees of interior angles of a	Lesson 13

parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles.	triangle is 180°.	
Lesson 14: More on the Angles of a Triangle 8.G.A. 5 Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles.	In Lesson 14, students take note of a related fact about the exterior angles of triangles.	Lesson 14
MODULE 2 - Topic D: The Pythagorean Theorem (Optional)		
Lesson 15: Informal Proof of the Pythagorean Theorem 8.G.B.6 Explain a proof of the Pythagorean Theorem and its converse.	In Topic D , students are guided through the square within a square proof of the Pythagorean theorem, which requires students to know that congruent figures also have congruent areas.	Lesson 15
Lesson 16: Applications of the Pythagorean Theorem 8.G.B. 7 Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions.	Once proved, students practice using the Pythagorean theorem and its converse in Lesson 16 to find unknown side lengths in right triangles. Students apply their knowledge of the Pythagorean theorem to real-world problems that involve two-and three-dimensional figures.	Lesson 16

Unit 1 Vocabulary

Module 1
 order of magnitude, scientific notation

Familiar Terms: base, cube (of a number), equivalent fractions, expanded form (of decimal numbers), exponential notation, integer, power, square (of a number), whole number

Module 2

adjacent angles, angle preserving, basic rigid motion, between, congruence, congruent, directed line segment, distance preserving, exterior angle, interior angle, reflection, rotation, sequence, transformation, translation, transversal, vector

Suggested Activities/Modifications

Below is a list of suggested activities, modifications, accommodations, and enrichment opportunities. This includes, but is not limited to,:

1. Activities
a. See Unit 1 Suggested Open Educational Resources
b. One quiz/One test
c. Desmos
d. Scavenger Hunt
e. Open Middle Problems http://www.openmiddle.com/
2. English Language Learners.
a. Read written instructions
b. Students may be provided with note organizers/study guides to reinforce key topics.
c. Model and provide examples
d. Extended time on assessments when needed.
e. Establish a non-verbal cue to redirect student when not on task.
f. Students may use a bilingual dictionary.
g. Pair Visual Prompts with Verbal Presentations
h. Highlight Key Words \& Formulas
3. Special Education/504 Students.
a. Students may be provided with note organizers / study guides to reinforce key topics.
b. Extended time on assessments when needed.
c. Preferred seating to be determined by student and teacher.
d. Provide modified assessments when necessary.
e. Student may complete assessments in alternate setting when requested.
f. Establish a non-verbal cue to redirect student when not on task.
g. Maintain strong teacher / parent communication.
h. Repetition and practice
i. Pair Visual Prompts with Verbal Presentations
j. Provide Formulas
k. Check Use of Agenda
4. Gifted and Talented Students.
a. Use of Higher Level Questioning Techniques
b. Extension/Challenge Questions
c. Provide Assessments at a Higher Level of Thinking
d. Graph the functions $\mathrm{y}=\mathrm{x} 2$ and $\mathrm{y}=2 \mathrm{x}$ on the same set of axes on a graphing calculator.
a. What happens to the graphs between $\mathrm{x}=1$ and $\mathrm{x}=3$?
b. How do you think the graph of $\mathrm{y}=6 \mathrm{x}$ would compare to the graphs of $\mathrm{y}=\mathrm{x} 2$ and $\mathrm{y}=2 \mathrm{x}$?

New Jersey Student Learning Standards - Technology

8.1.8.A.5 - Select and use appropriate tools and digital resources to accomplish a variety of tasks and to solve problems.

Career Readiness Practices

CRP1. Act as a responsible and contributing citizen and employee.
CRP2. Apply appropriate academic and technical skills.
CRP3. Attend to personal health and financial well-being.
CRP4. Communicate clearly and effectively and with reason.
CRP5. Consider the environmental, social and economic impacts of decisions.
CRP6. Demonstrate creativity and innovation.
CRP7. Employ valid and reliable research strategies.
CRP8. Utilize critical thinking to make sense of problems and persevere in solving them.
CRP9. Model integrity, ethical leadership and effective management.
CRP10. Plan education and career paths aligned to personal goals.
CRP11. Use technology to enhance productivity.
CRP12. Work productively in teams while using cultural global competence.

9.2 Career Awareness, Exploration, and Preparation Content Area: 21 ${ }^{\text {st }}$ Century Life and Careers Strand C: Career Preparation

9.2.8.B.3 Evaluate communication, collaboration, and leadership skills that can be developed through school, home, work, and extracurricular activities for use in a career.
9.2.8.B.4 Evaluate how traditional and nontraditional careers have evolved regionally, nationally, and globally.
9.2.8.B. 5 Analyze labor market trends using state and federal labor market information and other resources available online.
9.2.8.B. 7 Evaluate the impact of online activities and social media on employer decisions.

Career \& Technical Education Content Area: $21^{\text {st }}$ Century Life and Careers Standards
9.3.ST. 2 Use technology to acquire, manipulate, analyze and report data.
9.3.ST-SM. 4 Apply critical thinking skills to review information, explain statistical analysis, and to translate, interpret and summarize research and statistical data.
9.3.ST-SM. 3 Analyze the impact that science and mathematics has on society.

Interdisciplinary Connections: Light travels through space at a constant speed of about $3.5 \times 10^{\wedge} 5 \mathrm{~km} / \mathrm{s}$. Earth is about $1.5 \times 10^{\wedge} 8 \mathrm{~km}$ from the sun. How long does it take for light from the sun to reach the earth?

Unit 2

Unit 2 Functions, Equations, and Solutions			
Content \& Practice Standards	SMP	Critical Knowledge \& Skills	Standard Mastery Examples Can be used on formative, summative, benchmark, and alternative assessments.
MODULE 3 - Topic A: Dilation	MP. 3 Construct viable arguments \& critique the reasoning of others. MP. 4 Model with mathematics. MP. 6 Attend to precision. MP. 8 Look for and express regularity in repeated reasoning.		*Standards Mastery Examples are hyperlinked.
Lesson 1: What Lies Behind "Same Shape"? 8.G.A. 3 Describe the effect of dilations, translations, rotations, and reflections on twodimensional figures using coordinates.		In Lesson 1, dilation is defined, and the role of scale factor is demonstrated through the shrinking and magnification of figures.	$\underline{\text { Lesson } 1}$
Lesson 2: Properties of Dilations 8.G.A. 3 Describe the effect of dilations, translations, rotations, and reflections on twodimensional figures using coordinates.		In Lesson 2, properties of dilations are discussed. As with rigid motions, students learn that dilations map lines to lines, segments to segments, and rays to rays. Students learn that dilations are angle-preserving transformations.	Lesson 2
Lesson 3: Examples of Dilations 8.G.A. 3 Describe the effect of dilations, translations, rotations, and reflections on twodimensional figures using coordinates.		In Lesson 3, students use a compass to perform dilations of figures with the same center and figures with different centers. In Lesson 3, students begin to look at figures that are dilated followed by congruence.	Lesson 3
Lesson 4: Fundamental Theorem of Similarity 8.EE.A. 1 Describe the effect of dilations,		In Lessons 4 and 5, students learn and use the fundamental theorem of similarity.	Lesson 4

| 8.G.A.5 Use informal arguments to establish
 facts about the angle sum and exterior angle of
 triangles, about the angles created when paralle
 lines are cut by a transversal, and the angle-
 angle criterion for similarity of triangles. For
 example, arrange three copies of the same
 triangle so that the sum of the three angles
 appears to form a line, and give an argument in
 terms of transversals why this is so. | Lesson 10 provides students with an
 informal proof of the angle-angle (AA)
 criterion for similarity of triangles.
 Lesson 10 also provides opportunities
 for students to use the AA criterion to
 determine if two triangles are similar. | $\underline{\text { Lesson 10 }}$ |
| :--- | :--- | :--- | :--- |

triangles in real-world and mathematical problems in two and three dimensions.		determine unknown side lengths in right triangles. Students also use the converse of the theorem (i.e., given a triangle with lengths , b, and c, so that $a 2+b 2=c 2$, then the triangle is a right triangle with hypotenuse c) to determine if a given triangle is in fact a right triangle.	
MODULE 4 - Topic A: Writing and Solving Linear Equations	MP. 1 Make sense of problems and persevere in solving them. MP. 2 Reason abstractly and quantitatively. MP. 3 Construct viable arguments \& critique the reasoning of others. MP. 4 Model with mathematics. MP. 7 Look for and make use of structure.		
Lesson 1: Writing Equations Using Symbols 8.EE.C. 7 Solve linear equations in one variable. b. Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.		In Lesson 1, students begin by transcribing written statements into symbolic language. Students learn that before they can write a symbolic statement, they must first define the symbols they intend to use.	Lesson 1
Lesson 2: Linear and Nonlinear Expressions in x 8.EE.C. 7 Solve linear equations in one variable. b. Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.		In Lesson 2, students learn the difference between linear expressions in x and nonlinear expressions in x, a distinction that is necessary to know whether or not an equation can be solved (at this point). Also, Lesson 2 contains a quick review of terms related to linear equations, such as constant, term, and coefficient.	Lesson 2
Lesson 3: Linear Equations in x 8.EE.C. 7 Solve linear equations in one variable.		In Lesson 3, students learn that a linear equation in x is a statement of equality	Lesson 3

Lesson 7: Classification of Solutions 8.EE.C. 7 Solve linear equations in one variable. a. Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form x $=a,=a$, or $a=b$ results (where a and b are different numbers).		This leads to Lesson 7, where students learn that linear equations either have a unique solution, no solution, or infinitely many solutions (8.EE.C.7a).	$\underline{\text { Lesson } 7}$
Lesson 8: Linear Equations in Disguise 8.EE.C. 7 Solve linear equations in one variable. b. Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.		In Lesson 8, students rewrite equations that are not obviously linear equations and then solve them (8.EE.C.7b).	Lesson 8
Lesson 9: An Application of Linear Equations 8.EE.C. 7 Solve linear equations in one variable. a. Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form x $=a,=a$, or $a=b$ results (where a and b are different numbers).		In Lesson 9, students take another look at the Facebook problem from Module 1 in terms of linear equations (8.EE.C.7a).	$\underline{\text { Lesson } 9}$
MODULE 4 - Topic B: Linear Equations in Two Variables and Their Graphs			
Lesson 10: A Critical Look at Proportional Relationships 8.EE.B. 5 Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional		Topic B begins with students working with proportional relationships related to average speed and constant speed. In Lesson 10, students use information that is organized in the form of a table to	Lesson 10

relationships represented in different ways.		write linear equations.	
Lesson 11: Constant Rate 8.EE.B. 5 Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways.		In Lesson 10, students use information that is organized in the form of a table to write linear equations.	Lesson 11
Lesson 12: Linear Equations in Two Variables 8.EE.B. 5 Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways.		Lesson 12 introduces students to the standard form of an equation in two variables. At this point, students use a table to help them find and organize solutions to a linear equation in two variables.	Lesson 12
Lesson 13: The Graph of a Linear Equation in Two Variables 8.EE.B. 5 Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways.		In Lesson 13, students begin to question whether or not the graph of a linear equation is a line, as opposed to something that is curved.	Lesson 13
Lesson 14: The Graph of a Linear Equation-Horizontal and Vertical Lines 8.EE.B. 5 Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways.		Lesson 14 presents students with equations in standard form, $+b y=c$, where $a=0$ or $b=0$, which produces lines that are either vertical or horizontal.	Lesson 14

| Unit 2 Vocabulary |
| :--- | :--- |
| Module 3
 angle of rotation, center of dilation, center of rotation, dilation, interior angles, image, line of reflection, line of symmetry, reflection, rotation, rotational symmetry,
 scale factor, ratio, similar, similarity transformation, tessellations, translation
 Familiar Terms: angle-preserving, scale drawing
 Module 4 |

Average Speed, Constant Speed, Horizontal Line, Linear Equation, Point-Slope Equation of Line, Slope of a in a Cartesian Plane, Slope-Intercept Equation of a Line, Solution to a System of Linear Equations, Standard Form of a Linear Equation, Systems of Linear Equations, Vertical Line, X-intercept, Y-Intercept

Familiar Terms: Coefficient, Equation, Like Terms, Linear Equation, Solution, Term, Unit Rate, Variable

Suggested Activities/Modifications

Below is a list of suggested activities, modifications, accommodations, and enrichment opportunities. This includes, but is not limited to,:

1. Activities
a. See Unit 2 Suggested Open Educational Resources
b. One quiz/One test
c. Desmos www.Desmos.com
d. Scavenger Hunt
e. Open Middle Problems http://www.openmiddle.com/
2. English Language Learners.
a. Read written instructions
b. Students may be provided with note organizers/study guides to reinforce key topics.
c. Model and provide examples
d. Extended time on assessments when needed.
e. Establish a non-verbal cue to redirect student when not on task.
f. Students may use a bilingual dictionary.
g. Pair Visual Prompts with Verbal Presentations
h. Highlight Key Words \& Formulas
3. Special Education/504 Students.
a. Students may be provided with note organizers / study guides to reinforce key topics.
b. Extended time on assessments when needed.
c. Preferred seating to be determined by student and teacher.
d. Provide modified assessments when necessary.
e. Student may complete assessments in alternate setting when requested
f. Establish a non-verbal cue to redirect student when not on task.
g. Maintain strong teacher / parent communication.
h. Repetition and practice
i. Pair Visual Prompts with Verbal Presentations
j. Provide Formulas
k. Check Use of Agenda
4. Gifted and Talented Students
a. Manipulate 2-dimensional shapes as the means for students to develop inferences regarding properties of transformational geometry.
b. Assist students in identifying the real-world applications and significance of 2-\& 3-dimensional geometry.
c. Provide students sufficient opportunities to explore individually and in small groups the targeted geometric properties.

New Jersey Student Learning Standards - Technology

8.1.8.A.5 - Select and use appropriate tools and digital resources to accomplish a variety of tasks and to solve problems.

Career Readiness Practices

CRP1. Act as a responsible and contributing citizen and employee.
CRP2. Apply appropriate academic and technical skills.
CRP3. Attend to personal health and financial well-being
CRP4. Communicate clearly and effectively and with reason.
CRP5. Consider the environmental, social and economic impacts of decisions.
CRP6. Demonstrate creativity and innovation.
CRP7. Employ valid and reliable research strategies.
CRP8. Utilize critical thinking to make sense of problems and persevere in solving them.
CRP9. Model integrity, ethical leadership and effective management.
CRP10. Plan education and career paths aligned to personal goals.
CRP11. Use technology to enhance productivity.
CRP12. Work productively in teams while using cultural global competence.

9.2 Career A wareness, Exploration, and Preparation Content Area: 21 ${ }^{\text {st }}$ Century Life and Careers Strand C: Career Preparation

9.2.8.B.3 Evaluate communication, collaboration, and leadership skills that can be developed through school, home, work, and extracurricular activities for use in a career.
9.2.8.B.4 Evaluate how traditional and nontraditional careers have evolved regionally, nationally, and globally.
9.2.8.B.5 Analyze labor market trends using state and federal labor market information and other resources available online.
9.2.8.B. 7 Evaluate the impact of online activities and social media on employer decisions.

Career \& Technical Education Content Area: $21^{\text {st }}$ Century Life and Careers Standards

9.3.ST. 2 Use technology to acquire, manipulate, analyze and report data.
9.3.ST-SM. 4 Apply critical thinking skills to review information, explain statistical analysis, and to translate, interpret and summarize research and statistical data.
9.3.ST-SM. 3 Analyze the impact that science and mathematics has on society.

Interdisciplinary Connections: ART: Incorporate the use of artwork that involves tessellations. https://www.mathsisfun.com/geometry/tessellation.html

Unit 3

Unit 3 Pythagorean Theorem, Congruence and Similarity Transformations			
Content \& Practice Standards	Standards for Mathematical Practice	Critical Knowledge \& Skills	Standard Mastery Examples Can be used on formative, summative, benchmark, and alternative assessments.
MODULE 4 - Topic C: Slope and Equations of Lines	MP. 1 Make sense of problems and persevere in solving them. MP. 2 Reason abstractly and quantitatively. MP. 3 Construct viable arguments \& critique the reasoning of others. MP. 4 Model with mathematics. MP. 7 Look for and make use of structure.		*Standards Mastery Examples are hyperlinked.
Lesson 15: The Slope of a Non-Vertical Line. 8.EE.B. 6 Use similar triangles to explain why the slope m is the same between any two distinct points on a nonvertical line in the coordinate plane; derive the equation $y=m x$ for a line through the origin and the equation $y=m x+b$ for a line intercepting the vertical axis at b.		Topic C begins with students examining the slope of non-vertical lines. Students relate what they know about unit rate in terms of the slope of the graph of a line (8.EE.B.5).	Lesson 15
Lesson 16: The Computation of the Slope of a NonVertical Line 8.EE.B. 6 Use similar triangles to explain why the slope m is the same between any two distinct points on a nonvertical line in the coordinate plane; derive the equation $y=m x$ for a line through the origin and the equation $y=m x+b$ for a line intercepting the vertical axis at b.		In Lesson 16, students learn the formula for computing slope between any two points. Students reason that any two points on the same line can be used to determine slope because of what they know about similar triangles (8.EE.B.6).	Lesson 16
Lesson 17: The Line Joining Two Distinct Points of the Graph $y=m x+b$ Has slope m. 8.EE.B. 6 Use similar triangles to explain why the slope m is the same between any two distinct points on a non-		In Lesson 17, students transform the standard form of an equation into slope-intercept form. Further, students learn that the slope of a line	Lesson 17

8.EE.B. 5 Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.		any constant rate problem can be described by a linear equation in two variables where the slope of the graph is the constant rate (i.e., rate of change). Lesson 22 also presents students with two proportional relationships expressed in different ways. Given a graph and an equation, students must use what they know about slope to determine which of the two has a greater rate of change.	
Lesson 23: The Defining Equation of a Line 8.EE.B.6 Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation $y=m x$ for a line through the origin and the equation $y=m x+b$ for a line intercepting the vertical axis at b.		Lesson 23 introduces students to the symbolic representation of two linear equations that would graph as the same line.	Lesson 23
MODULE 4-Topic D: Systems of Linear Equations and Their Solutions			
Lesson 24: Introduction to Simultaneous Equations 8.EE.C. 8 Analyze and solve pairs of simultaneous linear equations. a. Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because points of intersection satisfy both equations simultaneously.		Lesson 24 introduces students to systems of linear equations by comparing distance-time graphs to determine which of two objects has greater speed (8.EE.B.5, 8.EE.C.8c).	Lesson 24
Lesson 25: Geometric Interpretation of the Solutions of a Linear System 8.EE.C. 8 Analyze and solve pairs of simultaneous linear equations.		Lessons 25-27 expose students to the possibilities for solutions of a system of linear equations. In Lesson 25, students graph two linear equations on a coordinate plane and identify the point of intersection of	$\underline{\text { Lesson } 25}$

a. Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because points of intersection satisfy both equations simultaneously.	the two lines as the solution to the system (8.EE.C.8a). Next, students look at systems of equations that graph as parallel lines (8.EE.C.8b).	
Lesson 26: Characterization of Parallel Lines 8.EE.C. 8 Analyze and solve pairs of simultaneous linear equations. b. Solve systems of two linear equations in two variables algebraically, and estimate solutions by graphing the equations. Solve simple cases by inspection. For example, $3 x+2 y=5$ and $3 x+2 y=6$ have no solution because $3 x+2 y$ cannot simultaneously be 5 and 6 .	Lessons 25-27 expose students to the possibilities for solutions of a system of linear equations. In Lesson 26, students learn that a system can have no solutions because parallel lines do not have a point of intersection (8.EE.C.8b).	Lesson 26
Lesson 27: Nature of Solutions of a System of Linear Equations 8.EE.C. 8 Analyze and solve pairs of simultaneous linear equations. b. Solve systems of two linear equations in two variables algebraically, and estimate solutions by graphing the equations. Solve simple cases by inspection. For example, $3 x+2 y=5$ and $3 x+2 y=6$ have no solution because $3 x+2 y$ cannot simultaneously be 5 and 6 .	Lessons 25-27 expose students to the possibilities for solutions of a system of linear equations. Lesson 27 continues this thinking with respect to systems that have infinitely many solutions (8.EE.C.8b).	Lesson 27
Lesson 28: Another Computational Method 8.EE.C. 8 Analyze and solve pairs of simultaneous linear equations. b. Solve systems of two linear equations in two variables algebraically, and estimate solutions by graphing the equations. Solve simple cases by inspection. For example, $3 x+2 y=5$ and $3 x+2 y=6$ have no solution because $3 x+2 y$ cannot simultaneously be 5 and 6 .	In Lesson 28, students learn how to solve a system of equations using computational methods, such as elimination and substitution (8.EE.C.8b).	Lesson 28

Lesson 29: Word Problems 8.EE.C. 8 Analyze and solve pairs of simultaneous linear equations. c. Solve real-world and mathematical problems leading to two linear equations in two variables. For example, given coordinates for two pairs of points, determine whether the line through the first pair of points intersects the line through the second pair.		In Lesson 29, students must use all of the skills of the module to transcribe written statements into a system of linear equations, find the solution(s) if it exists, and then verify that it is correct.	Lesson 29
Lesson 30: Conversion Between Celsius and Fahrenheit 8.EE.C. 8 Analyze and solve pairs of simultaneous linear equations. c. Solve real-world and mathematical problems leading to two linear equations in two variables. For example, given coordinates for two pairs of points, determine whether the line through the first pair of points intersects the line through the second pair. 8.EE.B. 5 Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.		Lesson 30 is an application of what students have learned about linear equations. Students develop a linear equation that represents the conversion between temperatures in Celsius to temperatures in Fahrenheit.	Lesson 30
MODULE 4 - Topic E: Pythagorean Theorem			
Lesson 31: Systems of Equations Leading to Pythagorean Triples 8.G.B. 7 Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions. 8.EE.C. 8 Analyze and solve pairs of simultaneous linear equations.		Lesson 31 shows students how to apply what they learned about systems of linear equations to find a Pythagorean triple (8.G.B.7, 8.EE.C.8b). The Babylonian method of generating Pythagorean triples, described in Lesson 31, uses a system of linear equations.	Lesson 31

b. Solve systems of two linear equations in two variables algebraically, and estimate solutions by graphing the equations. Solve simple cases by inspection. For example, $3 x+2 y=5$ and $3 x+2 y=6$ have no solution because $3 x+2 y$ cannot simultaneously be 5 and 6 .			
MODULE 5 - Topic A: Functions	MP. 2 Reason abstractly and quantitatively. MP. 6 Attend to precision. MP. 8 Look for and express regularity in repeated reasoning.		
Lesson 1: The Concept of a Function 8.F.A. 1 Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.		Lesson 1 relies on students' understanding of constant rate, a skill developed in previous grade levels and reviewed in Module 4 (6.RP.A.3b, 7.RP.A.2). Students are confronted with the fact that the concept of constant rate, which requires the assumption that a moving object travels at a constant speed, cannot be applied to all moving objects. Students examine a graph and a table that demonstrate the nonlinear effect of gravity on a falling object. This example provides the reasoning for the need of functions.	$\underline{\text { Lesson } 1}$
Lesson 2: Formal Definition of a Function 8.F.A. 1 Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.		In Lesson 2, students continue their investigation of time and distance data for a falling object and learn that the scenario can be expressed by a formula. Students are introduced to the terms input and output and learn that a function assigns to each input exactly one output. Though students do not learn the traditional "vertical-line test,"	Lesson 2

		students know that the graph of a function is the set of ordered pairs consisting of an input and the corresponding output. Students also learn that not all functions can be expressed by a formula, but when they are, the function rule allows us to make predictions about the world around us. For example, with respect to the falling object, the function allows us to predict the height of the object for any given time interval.	
Lesson 3: Linear Functions and Proportionality 8.F.A. 1 Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output. 8.F.A. 2 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.		In Lesson 3, constant rate is revisited as it applies to the concept of linear functions and proportionality in general.	Lesson 3
Lesson 4: More Examples of Functions 8.F.A. 2 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change. 8.F.A. 3 Interpret the equation $y=m x+b$ as defining a		Lesson 4 introduces students to the fact that not all rates are continuous. That is, a cost function for the cost of a book can be written, yet the cost of 3.6 books cannot realistically be found. Students are also introduced to functions that do not use numbers at all, as in a function where the input is a card from a standard deck, and the output is the	Lesson 4

linear function, whose graph is a straight line; give examples of functions that are not linear. For example, the function $A=s^{2}$ giving the area of a square as a function of its side length is not linear because its graph contains the points $(1,1),(2,4)$ and $(3,9)$, which are not on a straight line.		suit.	
Lesson 5: Graphs of Functions and Equations 8.F.A. 2 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change. 8.F.A. 3 Interpret the equation $y=m x+b$ as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. For example, the function $A=s^{2}$ giving the area of a square as a function of its side length is not linear because its graph contains the points $(1,1),(2,4)$ and $(3,9)$, which are not on a straight line.		Lesson 5 is when students begin graphing functions of two variables. Students graph linear and nonlinear functions, and the guiding question of the lesson, "Why not just look at graphs of equations in two variables?" is answered because not all graphs of equations are graphs of functions.	Lesson 5
Lesson 6: Graphs of Linear Functions and Rate of Change 8.F.A. 2 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change. 8.F.A. 3 Interpret the equation $y=m x+b$ as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. For example, the function $A=s^{2}$ giving the area of a square as a function of its side length is not linear because its graph contains the points $(1,1),(2,4)$ and $(3,9)$, which		Students continue their work on graphs of linear functions in Lesson 6. In this lesson, students investigate the rate of change of functions and conclude that the rate of change for linear functions is the slope of the graph. In other words, this lesson solidifies the fact that the equation y $=m x+b$ defines a linear function whose graph is a straight line.	Lesson 6

		situation.	
MODULE 6-Topic A: Linear Functions	MP. 2 Reason abstractly and quantitatively. MP. 4 Model with mathematics. MP. 6 Attend to precision. MP. 7 Look for and make use of structure.		
Lesson 1: Modeling Linear Relationships 8.F.B. 4 Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.		In Topic A, students build on their study of functions by recognizing a linear relationship between two variables (8.F.B.4). Students use the context of a problem to construct a function to model a linear relationship (8.F.B.4). In Lesson 1, students are given a verbal description of a linear relationship between two variables and then must describe a linear model. Students graph linear functions using a table of values and by plotting points. They recognize a linear function given in terms of the slope and initial value, or intercept.	Lesson 1
Lesson 2: Interpreting Rate of Change and Initial Value 8.F.B. 4 Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values. 8.F.B. 5 Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or		In Lesson 2, students interpret the rate of change and the y-intercept, or initial value, in the context of the problem. They interpret the sign of the rate of change as indicating that a linear function is increasing or decreasing (8.F.B.5) and as indicating the steepness of a line.	Lesson 2

decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.		
Lesson 3: Representations of a Line 8.F.B.4 Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x,y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.		In Lesson 3, students graph the line of a given linear function. They express the equation of a linear function as $y=m x+b$, or an equivalent form, when given the initial value and slope.
8.F.B.5 Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.		
Lessons 4-5: Increasing and Decreasing Functions 8.F.B.5 Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.		In Lessons 4 and 5, students describe and interpret a linear function given two points or its graph.

Module 4

Average Speed, Constant Speed, Horizontal Line, Linear Equation, Point-Slope Equation of Line, Slope of a in a Cartesian Plane, Slope-Intercept Equation of a Line,
Solution to a System of Linear Equations, Standard Form of a Linear Equation, Systems of Linear Equations, Vertical Line, X-intercept, Y-Intercept
Familiar Terms: Coefficient, Equation, Like Terms, Linear Equation, Solution, Term, Unit Rate, Variable

Module 5
Cone, Cylinder, Equation Form of a Linear Function, Function, Graph of a Linear Function, Lateral Edge and Face of a Prism, Lateral Edge and Face of a Pyramid, Linear Function, Solid Sphere or Ball, Sphere

Familiar Terms: Area, Linear Equation, Nonlinear Equation, Rate of Change, Solids, Volume

Module 6
Association, Bivariate Data Set, Column Relative Frequency, Row Relative Frequency, Scatter Plot, Two-Way Frequency Table, Variable

Familiar Terms: Categorical variable, intercept or initial value, Numerical variable, slope

```
Suggested Activities/Modifications
Below is a list of suggested activities, modifications, accommodations, and enrichment opportunities. This includes, but is not limited to,:
    1. Activities
    a. See Unit 3 Suggested Open Educational Resources
    b. One quiz/One test
    c. Desmos www.Desmos.com
    d. Scavenger Hunt
    e. Open Middle Problems http://www.openmiddle.com/
    2. English Language Learners.
            a. Read written instructions
            b. Students may be provided with note organizers/study guides to reinforce key topics.
            c. Model and provide examples
            d. Extended time on assessments when needed.
            e. Establish a non-verbal cue to redirect student when not on task.
            f. Students may use a bilingual dictionary.
            g. Pair Visual Prompts with Verbal Presentations
            h. Highlight Key Words & Formulas
    3. Special Education/504 Students.
            a. Students may be provided with note organizers / study guides to reinforce key topics.
```

b. Extended time on assessments when needed.
c. Preferred seating to be determined by student and teacher.
d. Provide modified assessments when necessary.
e. Student may complete assessments in alternate setting when requested.
f. Establish a non-verbal cue to redirect student when not on task.
g. Maintain strong teacher / parent communication.
h. Repetition and practice
i. Pair Visual Prompts with Verbal Presentations
j. Provide Formulas
k. Check Use of Agenda
4. Gifted and Talented Students.
a. Use of Higher Level Questioning Techniques b. Extension/Challenge Questions
b. Provide Assessments at a Higher Level of Thinking
c. Exploration Problems/Proofs
d. Desmos Activity https://teacher.desmos.com/transformations

New Jersey Student Learning Standards - Technology

8.1.8.A.5 - Select and use appropriate tools and digital resources to accomplish a variety of tasks and to solve problems.

Career Readiness Practices

CRP1. Act as a responsible and contributing citizen and employee.
CRP2. Apply appropriate academic and technical skills.
CRP3. Attend to personal health and financial well-being.
CRP4. Communicate clearly and effectively and with reason.
CRP5. Consider the environmental, social and economic impacts of decisions.
CRP6. Demonstrate creativity and innovation.
CRP7. Employ valid and reliable research strategies.
CRP8. Utilize critical thinking to make sense of problems and persevere in solving them.
CRP9. Model integrity, ethical leadership and effective management.
CRP10. Plan education and career paths aligned to personal goals.
CRP11. Use technology to enhance productivity.
CRP12. Work productively in teams while using cultural global competence.
9.2 Career Awareness, Exploration, and Preparation Content Area: 21 ${ }^{\text {st }}$ Century Life and Careers Strand C: Career Preparation
9.2.8.B.3 Evaluate communication, collaboration, and leadership skills that can be developed through school, home, work, and
extracurricular activities for use in a career.
9.2.8.B.4 Evaluate how traditional and nontraditional careers have evolved regionally, nationally, and globally.
9.2.8.B. 5 Analyze labor market trends using state and federal labor market information and other resources available online.
9.2.8.B.7 Evaluate the impact of online activities and social media on employer decisions.

Career \& Technical Education Content Area: $21^{\text {st }}$ Century Life and Careers Standards
9.3.ST. 2 Use technology to acquire, manipulate, analyze and report data.
9.3.ST-SM. 4 Apply critical thinking skills to review information, explain statistical analysis, and to translate, interpret and summarize research and statistical data.
9.3.ST-SM. 3 Analyze the impact that science and mathematics has on society.

Unit 4

Unit 4 Statistics and Probability: Scatterplots and Association			STandard Mastery Examples
Content \& Practice Standards	SMP	Critical Knowledge \& Skills	
Can be used on formative, summative,			
benchmark, and alternative assessments.			

| to the line. | | |
| :--- | :--- | :--- | :--- |
| MODULE 6 - Topic C: Linear and Nonlinear
 Models | | In Lesson 9, students interpret and determine the
 equation of the line they fit to the data and use
 the equation to make predictions and to
 evaluate possible association of the variables. |
| Lesson 9: Determining the Equation of a Line
 Fit to Data | | Based on these predictions, students address
 the need for a best-fit line, which is formally
 introduced in Algebra I. |
| 8.SP.A.2 Know that straight lines are widely
 used to model relationships between two
 quantitative variables. For scatter plots that
 suggest a linear association, informally fit a
 straight line, and informally assess the model
 fit by judging the closeness of the data points
 to the line. | | In Topic C, students interpret and use linear
 models. They provide verbal descriptions
 based on how one variable changes as the
 other variable changes (8.SP.A.3). Students |
| Lesson 10: Linear Models
 identify and describe how one variable
 changes as the other variable changes for
 linear and nonlinear associations. They | | |
| 8.SP.A.3 Use the equation of a linear model to
 solve problems in the context of bivariate
 measurement data, interpreting the slope and
 intercept. | | describe patterns of positive and negative
 associations using scatter plots (8.SP.A.1,
 $8 . S P . A .2) . ~ I n ~ L e s s o n ~ 10, ~ s t u d e n t s ~ i d e n t i f y ~$ |
| applications in which a linear function models | | |
| the relationship between two numerical | | |
| variables. | | |

suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line. 8.SP.A. 3 Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept.			
MODULE 6 - Topic D: Bivariate Categorical Data	MP.6: Attend to Precision MP.7: Look for and make use of structure MP.8: Look for and express regularity in repeated reasoning		
Lesson 12: Nonlinear Models in a Data Context (Optional) 8.SP.A. 4 Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables.		Topic D extends the concept of a relationship between variables to bivariate categorical data. In Lesson 12, students also examine patterns and graphs that describe nonlinear associations of data (8.SP.A.1)	$\underline{\text { Lesson } 12}$
Lesson 13: Summarizing Bivariate Categorical Data in a Two-Way Table 8.SP.A. 4 Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to		In Lesson 13, students organize bivariate categorical data into a two-way table (8.SP.A.4). They calculate row and column relative frequencies and interpret them in the context of a problem.	$\underline{\text { Lesson } 13}$

describe possible association between the two variables.			
Lesson 14: Association Between Categorical Variables 8.SP.A. 4 Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables.		In Lesson 14, students informally decide if there is an association between two categorical variables by examining the differences of row or column relative frequencies. They interpret association between two categorical variables as knowing the value of one of the variables provides information about the likelihood of the different possible values of the other variable.	Lesson 14
MODULE 7 - Topic A: Square and Cube Roots	MP.6: Attend to Precision MP.7: Look for and make use of structure MP.8: Look for and express regularity in repeated reasoning		
Lesson 1: The Pythagorean Theorem 8.NS.A. 1 Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number.		The use of the Pythagorean theorem to determine side lengths of right triangles motivates the need for students to learn about square roots and irrational numbers in general. While students have previously applied the Pythagorean theorem using perfect squares, students begin by estimating the length of an unknown side of a right triangle in Lesson 1 by determining which two perfect squares a squared number is between. This leads them to know between which two positive integers the length must be.	Lesson 1
Lesson 2: Square Roots 8.NS.A. 1 Know that numbers that are not rational are called irrational. Understand		In Lesson 2, students are introduced to the notation and meaning of square roots. The term and formal definition for irrational numbers is not given until Topic B, but	$\underline{\text { Lesson } 2}$

informally that every number has a decimal

 expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number.8.NS.A. 2 Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., π^{2}). For example, by truncating the decimal expansion of $\sqrt{ } 2$, show that $\sqrt{ } 2$ is between 1 and 2 , then between 1.4 and 1.5 , and explain how to continue to get better approximations.
8.EE.A. 2 Use square root and cube root symbols to represent solutions to equations of the form $x^{2}=p$ and $x^{3}=p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that $\sqrt{ } 2$ is irrational.
Lesson 3: Existence and Uniqueness of Square Roots and Cube Roots
8.EE.A. 2 Use square root and cube root symbols to represent solutions to equations of the form $x^{2}=p$ and $x^{3}=p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that $\sqrt{ } 2$ is irrational.

Lesson 4: Simplifying Square Roots (Optional)

8.EE.A. 2 Use square root and cube root symbols to represent solutions to equations of the form $x^{2}=p$ and $x^{3}=p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of

students know that many of this type of

 number exist between the positive integers on the number line. That fact allows students to place square roots on a number line in their approximate position using perfect square numbers as reference points.In Lesson 3, students are given proof that the square or cube root of a number exists and is unique. Students then solve simple equations that require them to find the square root or cube root of a number. These will be in the form $x^{2}=p$ or $x^{3}=p$, where p is a positive rational number.

In the optional Lesson 4, students learn that a square root of a number can be expressed as a product of its factors and use that fact to simplify the perfect square factors.

small perfect cubes. Know that $\sqrt{2}$ is irrational.			
Lesson 5: Solving Equations with Radicals 8.EE.A. 2 Use square root and cube root symbols to represent solutions to equations of the form $x^{2}=p$ and $x^{3}=p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that $\sqrt{ } 2$ is irrational.		In Lesson 5, students solve multi-step equations that require students to use the properties of equality to transform an equation until it is in the form $x^{2}=p$ and $x^{3}=p$, where p is a positive rational number	Lesson 5
MODULE 7 - Topic B: Decimal Expansions of Numbers	MP.6: Attend to Precision MP.7: Look for and make use of structure MP.8: Look for and express regularity in repeated reasoning		
Lesson 6: Finite and Infinite Decimals 8.NS.A. 1 Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number. 8.NS.A. 2 Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., π^{2}). For example, by truncating the decimal expansion of $\sqrt{ } 2$, show that $\sqrt{ } 2$ is between 1 and 2, then between 1.4 and 1.5 , and explain how to continue to get better approximations.		In Lesson 6, students learn that every number has a decimal expansion that is finite or infinite. Finite and infinite decimals are defined, and students learn a strategy for writing a fraction as a finite decimal that focuses on the denominator and its factors. That is, a fraction can be written as a finite decimal if the denominator is a product of twos, a product of fives, or a product of twos and fives.	Lesson 6
Lesson 7: Infinite Decimals 8.NS.A. 1 Know that numbers that are not rational are called irrational. Understand		In Lesson 7, students learn that numbers that cannot be expressed as finite decimals are infinite decimals. Students write the expanded	Lesson 7

informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number. 8.NS.A. 2 Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., π^{2}). For example, by truncating the decimal expansion of $\sqrt{ } 2$, show that $\sqrt{ } 2$ is between 1 and 2, then between 1.4 and 1.5 , and explain how to continue to get better approximations.		form of infinite decimals and show on the number line their decimal representation in terms of intervals of tenths, hundredths, thousandths, and so on. This work with infinite decimals prepares students for understanding how to approximate the decimal expansion of an irrational number.	
Lesson 8: The Long Division Algorithm 8.NS.A. 1 Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number. 8.NS.A. 2 Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., π^{2}). For example, by truncating the decimal expansion of $\sqrt{ } 2$, show that $\sqrt{ } 2$ is between 1 and 2 , then between 1.4 and 1.5 , and explain how to continue to get better approximations.		In Lesson 8, students use the long division algorithm to determine the decimal form of a number and can relate the work of the algorithm to why digits in a decimal expansion repeat. Students engage in a discussion about numbers that have an infinite decimal expansion with no discernable pattern in the digits, leading to the idea that numbers can be irrational. It is in these first few lessons of Topic B that students recognize that rational numbers have a decimal expansion that repeats eventually, either in zeros or in a repeating block of digits.	Lesson 8
Lesson 9: Decimal Expansions of Fractions, Part 1 8.NS.A. 1 Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal		The discussion of infinite decimals continues with Lesson 9, where students learn how to use what they know about powers of 10 and equivalent fractions to make sense of why the long division algorithm can be used to convert	Lesson 9

expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number. 8.NS.A. 2 Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., π^{2}). For example, by truncating the decimal expansion of $\sqrt{ } 2$, show that $\sqrt{ } 2$ is between 1 and 2, then between 1.4 and 1.5 , and explain how to continue to get better approximations.		a fraction to a decimal. Students know that multiplying the numerator and denominator of a fraction by a power of 10 is similar to putting zeros after the decimal point when doing long division.	
Lesson 10: Converting Repeating Decimals to Fractions 8.NS.A. 1 Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number. 8.NS.A. 2 Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., π^{2}). For example, by truncating the decimal expansion of $\sqrt{ } 2$, show that $\sqrt{ } 2$ is between 1 and 2 , then between 1.4 and 1.5 , and explain how to continue to get better approximations.		In Lesson 10, students learn that a number with a decimal expansion that repeats can be expressed as a fraction. Students learn a strategy for writing repeating decimals as fractions that relies on their knowledge of multiplying by powers of 10 and solving linear equations.	$\underline{\text { Lesson } 10}$
Lesson 11: The Decimal Expansion of Some Irrational Numbers 8.NS.A. 1 Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal		Lesson 11 introduces students to the method of rational approximation using a series of rational numbers to get closer and closer to a given number. Students write the approximate decimal expansion of irrational numbers in	$\underline{\text { Lesson } 11}$

expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number. 8.NS.A. 2 Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., π^{2}). For example, by truncating the decimal expansion of $\sqrt{ } 2$, show that $\sqrt{ } 2$ is between 1 and 2 , then between 1.4 and 1.5 , and explain how to continue to get better approximations. 8.EE.A. 2 Use square root and cube root symbols to represent solutions to equations of the form $x^{2}=p$ and $x^{3}=p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that $\sqrt{ } 2$ is irrational.		Lesson 11, and it is in this lesson that irrational numbers are defined as numbers that are not equal to rational numbers. Students realize that irrational numbers are different because they have infinite decimal expansions that do not repeat. Therefore, irrational numbers are those that are not equal to rational numbers.	
Lesson 12: Decimal Expansions of Fractions, Part 2 8.NS.A. 1 Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number. 8.NS.A. 2 Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., π^{2}). For example, by truncating the decimal expansion of $\sqrt{ } 2$, show that $\sqrt{ } 2$ is between 1 and 2 , then between 1.4 and 1.5 , and explain how to continue to get		Rational approximation is used again in Lesson 12 to verify the decimal expansions of rational numbers. Students then compare the method of rational approximation to long division.	Lesson 12

better approximations.			
Lesson 13: Comparing Irrational Numbers 8.NS.A. 1 Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number. 8.NS.A. 2 Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., π^{2}). For example, by truncating the decimal expansion of $\sqrt{ } 2$, show that $\sqrt{ } 2$ is between 1 and 2 , then between 1.4 and 1.5 , and explain how to continue to get better approximations.		In Lesson 13, students compare the value of rational and irrational numbers. Students use the method of rational approximation to determine the decimal expansion of an irrational number. Then, they compare that value to the decimal expansion of rational numbers in the form of a fraction, decimal, perfect square, or perfect cube. Students can now place irrational numbers on a number line with more accuracy than they did in Lesson 2. I	$\underline{\text { Lesson } 13}$
Lesson 14: Decimal Expansion of π 8.NS.A. 1 Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number. 8.NS.A. 2 Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., π^{2}). For example, by truncating the decimal expansion of $\sqrt{ } 2$, show that $\sqrt{ } 2$ is between 1 and 2 , then between 1.4 and 1.5 , and explain how to continue to get better approximations.		In Lesson 14, students approximate π using the area of a quarter circle that is drawn on grid paper. Students estimate the area of the quarter circle using inner and outer boundaries. As with the method of rational approximation, students continue to refine their estimates of the area, which improves their estimate of the value of π. Students then determine the approximate values of expressions involving π.	$\underline{\text { Lesson } 14}$

MODULE 7 - Topic C: The Pythagorean Theorem	MP.6: Attend to Precision MP.7: Look for and make use of structure MP.8: Look for and express regularity in repeated reasoning		
Lesson 15: Pythagorean Theorem, Revisited 8.G.B.6 Explain a proof of the Pythagorean Theorem and its converse. 8.G.B. 7 Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions. 8.G.B. 8 Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.		In Lesson 15, students engage with another proof of the Pythagorean theorem. This time, students compare the areas of squares that are constructed along each side of a right triangle in conjunction with what they know about similar triangles. Now that students know about square roots, students can determine the approximate length of an unknown side of a right triangle even when the length is not a whole number.	Lesson 15
Lesson 16: Converse of the Pythagorean Theorem 8.G.B.6 Explain a proof of the Pythagorean Theorem and its converse.		Lesson 16 shows students another proof of the converse of the Pythagorean theorem based on the notion of congruence. Students practice explaining proofs in their own words in Lessons 15 and 16 and apply the converse of the theorem to make informal arguments about triangles as right triangles.	$\underline{\text { Lesson } 16}$
Lesson 17: Distance on the Coordinate Plane 8.G.B. 8 Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.		Lesson 17 focuses on the application of the Pythagorean theorem to calculate the distance between two points on the coordinate plane.	$\underline{\text { Lesson } 17}$

Lesson 18: Applications of the Pythagorean Theorem 8.G.B. 7 Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions. 8.G.B. 8 Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.		Lesson 18 gives students practice applying the Pythagorean theorem in a variety of mathematical and real-world scenarios. Students determine the height of isosceles triangles, determine the length of the diagonal of a rectangle, and compare lengths of paths around a right triangle.	$\underline{\text { Lesson } 18}$
MODULE 7 - Topic D: Applications of Radicals and Roots	MP.6: Attend to Precision MP.7: Look for and make use of structure MP.8: Look for and express regularity in repeated reasoning		
Lesson 19: Cones and Spheres 8.G.B. 7 Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions. 8.G.C. 9 Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.		In Lesson 19, students use the Pythagorean theorem to determine the height, lateral length (slant height), or radius of the base of a cone. Students also use the Pythagorean theorem to determine the radius of a sphere given the length of a cord. Many problems in Lesson 19 also require students to use the height, length, or radius they determined using the Pythagorean theorem to then find the volume of a figure.	Lesson 19
Lesson 20: Truncated Cones 8.G.B. 7 Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions. 8.G.C. 9 Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.		In Lesson 20, students learn that the volume of a truncated cone can be determined using facts about similar triangles. Specifically, the fact that corresponding parts of similar triangles are equal in ratio is used to determine the height of the part of the cone that has been removed to make the truncated cone. Then, students calculate the volume of the whole cone (i.e., removed part and truncated part) and subtract the volume of the removed portion to determine the volume of the	$\underline{\text { Lesson } 20}$

	truncated cone. In this lesson, students learn that the formula to determine the volume of a pyramid is analogous to that of a cone. That is, the volume of a pyramid is exactly one-third the volume of a rectangular prism with the same base area and height.	
Lesson 21: Volume of Composite Solids 8.G.B. 7 Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions. 8.G.C. 9 Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.	In Lesson 21, students determine the volume of solids comprised of cylinders, cones, spheres, and combinations of those figures as composite solids. Students consistently link their understanding of expressions (numerical and algebraic) to the volumes they represent. I	Lesson 21
Lesson 22: Average Rate of Change 8.G.B. 7 Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions. 8.G.C. 9 Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.	In Lesson 22, students apply their knowledge of volume to compute the average rate of change in the height of the water level when water drains into a conical container. Students bring together much of what they have learned in Grade 8, such as Pythagorean theorem, volume of solids, similarity, constant rate, and rate of change, to work on challenging problems in Lessons 22 and 23.	$\underline{\text { Lesson } 22}$
Lesson 23: Nonlinear Motion 8.G.B. 7 Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions. 8.G.C. 9 Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.	The optional modeling lesson, Lesson 23, challenges students with a problem about nonlinear motion. In describing the motion of a ladder sliding down a wall, students bring together concepts of exponents, roots, average speed, constant rate, functions, and the Pythagorean theorem. Throughout the lesson, students are challenged to reason abstractly and quantitatively while making sense of problems, applying their knowledge of concepts learned throughout the year to persevere in solving them.	$\underline{\text { Lesson } 23}$

Module 6

Association, Bivariate Data Set, Column Relative Frequency, Row Relative Frequency, Scatter Plot, Two-Way Frequency Table, Variable

Familiar Terms: Categorical variable, intercept or initial value, Numerical variable, slope

Module 7

Cube Root, Decimal Expansion, Decimal Expansion of a Negative number, Decimal Expansion of Positive Real Number, Decimal System, Irrational Number, The $\mathrm{n}^{\text {th }}$ Decimal Digit of a Decimal Expansion, The $n^{\text {th }}$ Finite Decimal of a Decimal Expansion, Perfect Square, Rational Approximation, Real Number, A Square Root of a Number, The Square Root of a Number, Truncated Cone

Familiar Terms: Decimal Expansion, Finite Decimal, Number Line, Rate of Change, Rational Number, Volume

Below is a list of suggested activities, modifications, accommodations, and enrichment opportunities. This includes, but is not limited to,:

1. Activities
a. See Unit 4 Suggested Open Educational Resources
b. One quiz/One test
c. Desmos www.Desmos.com
d. Scavenger Hunt
e. Open Middle Problems http://www.openmiddle.com/
f. Conduct Surveys to Create Two-Way Tables and Scatter Plots
2. English Language Learners.
a. Read written instructions
b. Students may be provided with note organizers/study guides to reinforce key topics.
c. Model and provide examples
d. Extended time on assessments when needed.
e. Establish a non-verbal cue to redirect student when not on task.
f. Students may use a bilingual dictionary.
g. Pair Visual Prompts with Verbal Presentations
h. Highlight Key Words \& Formulas
3. Special Education/504 Students.
a. Students may be provided with note organizers / study guides to reinforce key topics.
b. Extended time on assessments when needed.
c. Preferred seating to be determined by student and teacher.
d. Provide modified assessments when necessary.
e. Student may complete assessments in alternate setting when requested.
f. Establish a non-verbal cue to redirect student when not on task.
g. Maintain strong teacher / parent communication.
h. Repetition and practice
i. Pair Visual Prompts with Verbal Presentations
j. Provide Formulas
k. Check Use of Agenda
4. Gifted and Talented Students.
a. Use of Higher Level Questioning Techniques
b. Extension/Challenge Questions

New Jersey Student Learning Standards - Technology

8.1.8.A.5 - Select and use appropriate tools and digital resources to accomplish a variety of tasks and to solve problems.

- Using online models (for example NCTM-Illuminations), enter data into a frequency table and examine the resulting data plot and trend line. Identify the relationship between input and output values.

Career Readiness Practices

CRP1. Act as a responsible and contributing citizen and employee.
CRP2. Apply appropriate academic and technical skills.
CRP3. Attend to personal health and financial well-being.
CRP4. Communicate clearly and effectively and with reason.
CRP5. Consider the environmental, social and economic impacts of decisions.
CRP6. Demonstrate creativity and innovation.
CRP8. Utilize critical thinking to make sense of problems and persevere in solving them.
CRP11. Use technology to enhance productivity.

9.2 Career Awareness, Exploration, and Preparation Content Area: $21{ }^{\text {st }}$ Century Life and Careers Strand C: Career Preparation

9.2.8.B. 3 Evaluate communication, collaboration, and leadership skills that can be developed through school, home, work, and extracurricular activities for use in a career.
9.2.8.B. 4 Evaluate how traditional and nontraditional careers have evolved regionally, nationally, and globally.
9.2.8.B. 5 Analyze labor market trends using state and federal labor market information and other resources available online.
9.2.8.B.7 Evaluate the impact of online activities and social media on employer decisions.

Interdisciplinary Connections: Science: Develop a scatter plot for an experiment (for example, the relationship between temperature and pressure for a given volume). Identify the trend line and determine if the relationship is linear.

Media Literacy: Voter polls are much more accurate than they used to be. The science of random selection poll participants began after a poll conducted in 1936 inaccurately predicted who would win the Presidential election. Find a news article that uses poll data as a source of information. Research the polling company and the methods used and describe why random selection polling is an accurate way of making predictions.
III. Additional Differentiation/Modifications for Teaching

Research-Based Effective Teaching Strategies	Additional Modifications for G\&T	Additional Strategies for Special Education	Additional Strategies for English Language Learners
Questioning techniques to facilitate learning - See also Five Practices for Orchestrating Math Discussion	See EngageNY Grade 8 for Classroom Differentiation for Gifted Students.	See EngageNY Grade 8 for Classroom Differentiation for information on Special Need Students.	Extension: See EngageNY Grade 8 for Scaffolding Instruction for English Language Learners.
• Talk Moves			

IV. Instructional Resources and Materials

Formative Assessment	Summative Assessment	Supplemental	Resources	Print Resource
Short constructed responses Extended constructed responses Teacher Observation Checks for understanding Do Now Exit Tickets Problem Sets (EngageNY) Sprints (EngageNY) Extension - See additional performance tasks in the Unit Standards Overview.	End-of-Module Assessment (EngageNY) Mid-Module Assessment (EngageNY)	Teacher Resources Annenberg Learning Mathematics Assessment Projects Achieve the Core Mathplanet.com Interactive Mathematics.com Illustrative Mathematics Inside Mathmatics.org EdConnect.org Prodigy Desmos iReady Khan Academy	Student Resources Khan Academy Prodigy iReady Math is Fun (website) Virtual Nerd Engage NY (website) Engage NY (Homework Helpers) A Math Dictionary for Kids	Eureka Math - Engage NY Grade 8 Mathematics

Grade 8 Pacing Guide

